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Chapter 1

Introduction

This chapter provides a short motivation for the research and presents an overview
of the motion of bubbles and spheres in different regimes. The differences between
bubbles and spheres are discussed, in what way these differences affect the forces
acting on them, as well as how the motion of bubbles and spheres is affected by a
flow in solid body rotation. The chapter concludes with a guide through the thesis.

————————————————————————————————

1.1 Motivation

Bubbles and particles are found in many natural flow phenomena (for example
atmospheric and oceanic flows) and many industrial applications (such as chemical
reactions, fluid transport systems, mixing and separation processes). Due to the
widespread occurrence of particle or bubble laden flows a lot of research effort is
spend to understand, and sometimes control, the behavior of particles and bubbles
in different types of flow. In this thesis the research is directed to understanding
the fundamental aspects of a single particle or bubble or a pair of particles.

One specific flow type is thoroughly examined: a cylindrically rotating flow
where a fluid volume is rotating around a horizontal axis in such a way that no
part of the fluid has motion relative to any other part of the fluid, i.e. solid body
rotation or, alternatively, rigid-body rotation. The understanding of this type of
flow is important on a fundamental level, since the velocity between two points
located a small distance apart can be decomposed into two types of motion: a pure
straining motion and a rigid-body rotation (Batchelor [5]). The effects of the last
type on particle and bubble behavior are studied here. An other reason for interest
in this flow type is the occurrence of rotating flow regions in turbulent flows and
geophysical flows.

1



2 CHAPTER 1. INTRODUCTION

1.2 Bubble and particle motion

In this section we introduce the equation of motion used throughout the thesis
and discuss the forces that appear in this equation of motion. A distinction is made
between the parameterizations and relevance of the forces on particles and bubbles.

1.2.1 Equation of motion for objects in a fluid

Consider an object with density ρb, volume V and projected area A, translating
with velocity v in a fluid with dynamic viscosity µ and density ρ. The equation of
motion for the object is given by (Candelier et al. [6], Magnaudet and Eames [19])

(ρCA + ρ)V
dv

dt
= ρV (CA + 1)

DU

Dt
+ (ρb − ρ)V g +

1

2
ρCDA|U − v|(U − v) + 6

√
µρCHA

∫ t

0

∂U

∂τ (τ) + v∇U − dv
dτ (τ)

√

π(t − τ)
dτ +

ρV CL(U − v) × (∇× U),

(1.1)

where U is the velocity of the undisturbed ambient flow taken at the center of the
bubble. CA, CD, CH and CL are respectively the added mass, drag, history, and lift
coefficients. The left hand side represents a combination of the inertia of the body
and a part of the added mass force. The right hand side represents a combination
of the added mass due to the spatial gradient of the flow field and the pressure
gradient force. These terms are followed by the buoyancy force, the drag force, the
history force and the lift force. In order to be able to model the object’s behavior,
we need to know the parameterizations for the added mass, drag, history and lift
coefficients for different flow situations.

High Reynolds numbers

For high Reynolds numbers, the history term in (1.1) is no longer relevant. An-
alytical results for this regime have been obtained by neglecting viscosity in the
Navier-Stokes equations. For a steady inviscid flow with a weak shear Auton [1]
has shown that CL = 1/2.

Low Reynolds numbers

For low Reynolds numbers inertia can be neglected. This, however, is not uni-
formly valid, which can be overcome by using singular perturbation techniques
(for example [11, 13, 21, 27, 28]). For unsteady flow the history force becomes
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relevant in equation (1.1) and in this regime CH=1. Usually, the lift coefficient for
low-Reynolds-number flow is defined by FL = 1/2ρCLAU2.

Intermediate Reynolds numbers

For the intermediate Reynolds numbers no simplification of the Navier-Stokes
equation such as neglecting viscosity (high Reynolds numbers) or inertia (low
Reynolds numbers) is possible. To obtain a description of bubble and particle be-
havior in this range, experimental methods or direct numerical simulations (DNS)
are used.

1.2.2 Differences between particles and (clean) bubbles

Although (1.1) is used throughout this work, important differences exist between
bubbles and particles affecting the drag, lift, and added mass coefficients.

First, the boundary condition on the surface is different for a bubble or a parti-
cle. If the liquid is pure enough, it can slip along the surface of a bubble, whereas
a rigid particle is subject to the no-slip boundary condition. As a consequence, the
velocity perturbation due to a clean bubble is smaller than that due to a particle
for Re ≫ 1. Moreover, the wake region behind a bubble is thinner than behind a
particle at equal Reynolds number. The critical Reynolds number Rec at which the
wake of the body becomes unsteady is higher for bubbles than for particles. Fur-
thermore, particles can rotate, giving rise to a Magnus-like lift and thus influencing
the lift coefficient. It should be noted that in experiments with non-clean bubbles
the surface of such a bubble also rotates.

Due to the large density difference between a fluid and a bubble, inertia-induced
hydrodynamic forces are particularly relevant for bubbles.

Another important issue is the deformability of bubbles. This will not only
affect the lift and drag forces, but also the added mass force. Below, several pa-
rameterizations for the drag, lift and added mass coefficients are discussed.

It should be noted that these difference are valid when comparing clean spher-
ical bubbles with solid spheres. However, it is known that due to surface-active
impurities (e.g. [12]) a small fluid inclusion behaves much like a rigid sphere.
Therefore we can use rigid spheres to obtain a better understanding of the be-
havior of surfacted bubbles and some of the parameterizations for spheres may be
more applicable to bubbles in an impure fluid than those for clean spherical bub-
bles. Of course the effects of the deformation in the bubble is not included in these
parameterizations and these should be further studied.
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History force

The history force is a transient force. In Michaelides [23] a review of the transient
forces on particles, bubbles, and droplets is given. In general much more vorticity
is created on the surface of a solid sphere than on that of a clean spherical bubble.
As a result the history force plays a larger role for solid spheres. For steady state
situations there is no history force. In situations where the frequency of the motion
is low and the Reynolds number is high, it is negligible.

Drag coefficient

For clean spherical bubbles the drag coefficient can be parameterized for all Re
by [19, 22]:

CD =
16

Re

[

1 +

[

8

Re
+

1

2
(1 + 3.315Re−

1

2 )

]

−1]

. (1.2)

For solid spheres a much used parametrization, valid for Re < 800 is that of
Schiller and Neuman [8]:

CD =
24

Re
[1 + 0.15Re0.687]. (1.3)

For deformed bubbles the drag coefficient changes, it can be expressed in terms
of the aspect ratio χ (i.e. major axis / minor axis) as derived by Moore [25]

CD =
48

Re
G(χ)

(

1 +
H(χ)√

Re

)

, (1.4)

where

G(χ) =
1

3
χ4/3(χ2 − 1)3/2 [(χ2 − 1)1/2 − (2 − χ2) sec χ−1]

[χ2 sec χ−1 − (χ2 − 1)1/2]2
, (1.5)

and H(χ) is tabulated in [25].
In contaminated systems, surfactants will collect at the bubble surface. This

changes the surface tension and will make the bubble more rigid, so that it will
behave more like a solid sphere. The slip along the surface of the bubble will be
decreased, as a result the drag is increased [19].

The drag coefficient also depends on the shear rate. Magnaudet and Legen-
dre [17] indicate for a spherical bubble in a linear shear flow that, when shear rates
are in the order of unity, the drag coefficient is strongly increased by shear. From
their numerical results they determined an expression for the dependence of the
drag coefficient on the non-dimensional shear rate Srs

CD = CD0(1 + 0.55Srs
2), (1.6)
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where CD0 is the drag coefficient according to Moore for a spherical bubble in a
uniform shear flow at high Reynolds number [24].

Lift coefficient

The lift coefficient at low Reynolds numbers is found to depend strongly on the
Reynolds number and the shear rate. For moderate to high Reynolds numbers
these dependencies are weak [17]. For low Reynolds numbers Saffman [28] and
McLaughlin [21] analytically determined the size in a linear shear flow. In case
of a low-Reynolds-number linear shear flow, Legendre and Magnaudet [16] calcu-
lated that the lift force experienced by a solid sphere is a factor 9

4
larger than that

experienced by a bubble. In the inviscid limit Auton [1], Auton et al. [2] found
the lift coefficient to be 1/2. In the intermediate Reynolds range results for bubbles
are obtained by DNS (for example Legendre and Magnaudet [17], Magnaudet and
Legendre [20]) and experimentally (for example Tomiyama [32]). For spheres nu-
merical results were obtained by Bagchi and Balachandar [4], Dandy and Dwyer
[10], Kurose and Komori [14].

Because of the zero-shear-stress boundary condition of a spherical bubble, the
flow around the bubble will not induce a rotation of a clean spherical bubble [17].
Particles however can start to spin due to the shear of the flow. This spin will intro-
duce an additional contribution to the lift force since the flow field is changed by
the rotation of the particle due to the no-slip boundary condition. Robins described
the observation that a projectile spinning about its axis experiences a lift force [29].
Magnus later described this effect for rotating cylinders.

The lift force due to the Robins or Magnus effect FLΩ
is directed normal to the

velocity U and is proportional to the circulation Γ. The lift force on a small disk
of the sphere as sketched in figure 1.1 is

dFLΩ
= ρU

∮

(U · dl)dz,

where
∮

(U · dl) is the circulation Γ along a closed curve as depicted in figure 1.1.
For a sphere with radius R rotating with angular velocity ΩP this results in (by
applying Stokes’ theorem and noting that the vorticity equals twice the angular
velocity of the sphere) an absolute value of

FLΩ
= ρU2ΩP

∫

A(z)dz =
8

3
πR3ρUΩP . (1.7)

This lift force describes the specific case of a sphere spinning in a uniform flow.
For the general case (where the flow may not be uniform) the lift is defined in terms
of a lift coefficient throughout this thesis.
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z

x

y

A(z)
dl

U

Figure 1.1: Sketch of circulation around a part of a sphere.

Added mass coefficient

The added-mass tensor for a sphere is diagonal and can be represented by an added-
mass coefficient, CA = 1/2. Since the added mass force is the reaction of the fluid
to acceleration of the body, it takes a different value if the body has different shape.
This is represented by the added mass tensor. For an oblate bubble, CA is [15]:

CA =
α0

2 − α0

, with (1.8)

α0 =

√
1 − e2

e3
arcsin(e) − 1 − e2

e2
, where

e =
√

1 − (c/a)2, (a > c),

where a and c refer to the semi-major and semi-minor axis of the oblate ellipsoid.

1.2.3 Bubble and particle motion in solid body rotation

Most research for bubble and particle behavior considers uniform flow or linear
shear flow. In this thesis the focus is on solid body rotation. In this type of flow
the parameterization of the forces may be different, forces that or not relevant in a
linear shear flow may become relevant in a solid body rotation and new effects may
appear. This section provides a short overview of what modification of particle and
bubble behavior we may expect due to the solid body rotation.

Forces due to acceleration of the flow

In the case of a rotating cylindrical system, the flow undergoes an acceleration
(DU

Dt ). In the laboratory frame, the particle itself does not accelerate. An inertial



1.3. A GUIDE THROUGH THE CHAPTERS 7

force directed towards the center of the flow acts on the particle. The inertial force
is sometimes referred to as the pressure force [30], because it can be seen as a result
of the pressure gradient (due to the centrifugal acceleration) in the cylinder.

Wake interaction

For an object in a solid body rotation, the wake of the object may be advected down
so far that it will reach the top of the object again after one revolution. In chapter 4
this mechanism is discussed in detail and possible consequences are considered.
The effect is likely to be much smaller for clean bubbles than for solid spheres.

Parameterizations of the lift force in solid body rotation

Most parameterizations for the lift force are for a bubble or particle in a linear shear
flow. As will become clear throughout this thesis, forces expressed in terms of co-
efficients in solid body rotation may take quite different forms than in a linear shear
flow. Therefore it is of interest to explore previous work considering specifically
the case of solid body rotation. Naciri [26] and Sridhar and Katz [31] both ex-
perimentally explored bubbles in this type of flow. Magnaudet and Legendre [20]
found by a numerical study which also addresses solid body rotation a parameter-
ization for the lift coefficient for clean spherical bubbles. Bagchi and Balachandar
[3] studied the differences between shear and vortex induced lift for solid spheres.
In the low but non-zero Reynolds regime Coimbra and Kobayashi [9] used an exact
method to solve the Lagrangian equation of motion for a particle in a solid body ro-
tation and the analytical work by Lim et al. [18] explores the history lift effects in a
rotating flow. All of the previous cited papers address a cylindrical solid body rota-
tion where the axis of rotation is perpendicular to the direction of the gravitational
acceleration. Candelier et al. [6, 7] considered theoretically and experimentally a
geometry where the axis of the solid body rotation coincides with the direction of
the gravitational acceleration. Their research was for small Reynolds numbers.

1.3 A guide through the chapters

In this chapter the motivation for this research and some background information
about particles and bubbles and their behavior in solid body rotation have been pre-
sented. In chapter 2 the behavior of bubbles in solid body rotation is addressed for
a wide range of Reynolds numbers. The experimental setup for studying bubbles
is also described. For the exploration of particle behavior a different experimental
setup was used (chapter 4). Before the behavior of particles in solid body rotation
is addressed, particle spin is studied in chapter 3. The experimental study of the
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particle spin rate is confined to spheres in solid body rotation. However, the results
are mainly numerical and the differences in the spin rates for different flow types
are investigated at moderate Reynolds numbers. Chapter 4 then addresses the ex-
perimentally obtained equilibrium positions of particles. The experiments cover a
wide Reynolds range.

Since the sphere is the most simple three-dimensional shape, it is often used
to model particle laden flows. However, many flow processes involve irregular
shapes such as elongated bubbles, and non-spherical particles. Chapter 5 discusses
the behavior of particles and bubbles with irregular shapes in a solid body rotation
flow.

In chapter 6 hydrodynamic interactions between identical particles are ex-
plored, mainly numerically. Again, the flow field under consideration is a solid
body rotation. The effects of changing the distance of a particle pair with respect
to the cylinder axis are explored.

Chapter 7 connects the conclusions of the different chapters and summarizes
the main results for particle and bubble behavior is the horizontal solid body rota-
tion investigated in this thesis.
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Chapter 2

Bubbles in a rotating flow‡

In this chapter the motion of small air bubbles in a horizontal solid body rotating
flow is investigated experimentally. Bubbles with a typical radius of 1 mm are
released in a liquid-filled, horizontally rotating cylinder. We measure the transient
motion of the bubbles in solid body rotation and their final equilibrium position
from which we compute drag and lift coefficients for a wide range of dimensionless
shear rates 0.1 < Sr < 2 (Sr is the velocity difference over one bubble diameter
divided by the slip velocity of the bubble) and Reynolds numbers 0.01 < Re < 500
(Re is based on the slip velocity and bubble diameter). For large Sr we find that the
drag force is increased by the shear rate. The lift force shows strong dependence
on viscous effects. In particular, for Re < 5 we measure negative lift forces, in line
with theoretical predictions.

————————————————————————————————

2.1 Introduction

Bubbly flows are of great importance in many technical and environmental ques-
tions and applications. Therefore understanding the dynamics of bubbles and the
forces acting on them is a central issue in multi-phase flow research. These forces
result from the integrated stresses acting on their (deformable) surfaces. A full
numerical treatment is only possible for a limited number of bubbles. For in-
stance, Tryggvason et al. [29] could simulate at most a few hundred bubbles, rising
at moderate Reynolds number (Re = 20 − 30), by employing a front-tracking
method. To be able to numerically track many more bubbles in an efficient way

‡E.A. van Nierop, S. Luther, J.J. Bluemink, J. Magnaudet, A. Prosperetti and D. Lohse, Drag and
lift forces on bubbles in a rotating flow, J. Fluid Mech. 571, 439-454 (2007).
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(for instance to study modifications of turbulence by bubbles), realistic models of
the various forces acting on bubbles are required. It is therefore crucial to know
how the drag and lift – or, in nondimensional form, the drag and lift coefficients –
depend on the particular flow situation, i.e., on the local velocity, shear, or vorticity,
etc.

The importance and subtlety of the lift force is reflected in various examples:
(i) In upward vertical pipe flow the lateral distribution of bubbles is governed by
the lift. The radial bubble migration is found to strongly depend on the bubble
size: small bubbles migrate towards the pipe wall, whereas large bubbles tend to
accumulate in the center, resulting in a core-peak bubble distribution (Guet et al.
[10]). The sign of the lift force is believed to also depend on the bubble’s shape.
Measurements of lift forces for bubbles in a simple shear flow were carried out at
moderate Re by Tomiyama [28]. These measurements indicate negative lift forces
for large deformed bubbles, resulting in a lateral motion of the bubbles opposite to
that predicted for a spherical bubble by inviscid theory. (ii) Numerical simulations
of bubble-laden homogeneous and isotropic turbulent flow show that the role of the
lift force is crucial, because it strongly enhances the preferential accumulation of
bubbles in the downward flow side of vortices (Climent and Magnaudet [7], Mazz-
itelli et al. [18, 19]). This results in a considerably reduced rise velocity of the
bubbles and an alteration of large-scale motion.

The aim of this work is to experimentally measure the lift and drag forces in a
well-defined flow geometry, with well defined and temporal constant flow veloc-
ity and vorticity. More specifically, we revisit the experiments by Naciri [21] who
studied a bubble in a rotating cylinder, i.e., in a well-defined solid body rotating
flow. The advantage of this set-up is that the bubbles reach a stable position. In
this equilibrium position the forces acting on the bubble – buoyancy, viscous drag,
added mass, inertial (or pressure gradient) force and lift – exactly balance each
other. Drag and lift can then be deduced from the known added mass, inertial,
and buoyancy forces. As compared to Naciri [21], we considerably extended the
studied parameter space and also increased the experimental precision. We also
compare our results with those from Sridhar and Katz [25] who studied the force
on a bubble placed in a vortex ring.

Related work is described in Rensen et al. [22] where we study the competition
between hydrodynamical and acoustical forces and in Lohse and Prosperetti [14].
Complementary work on the analysis of heavy particles in solid body rotation is
reported in Ashmore et al. [1], Seddon and Mullin [24]; where the focus is on the
interaction of the heavy object with the wall.
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The outline of this paper is as follows. In Sec. 2.2 the equation of motion
of a bubble is introduced, the relevant dimensionless numbers are indicated and
previous results for lift and drag coefficients are discussed. The experimental set-up
is described in Sec. 2.3. The results for the drag and lift coefficient measurements
are stated in Sec. 2.4 followed by concluding remarks in Sec. 2.5.

2.2 Effective forces on bubbles

2.2.1 Dynamical equations, flow field, and dimensionless parameters

For a clean (i.e. uncontaminated by surfactants) spherical bubble rising at moderate-
to-large Reynolds number, the approximate force balance is (Magnaudet and Eames
[15]):

ρlVbCA
dv

dt
= ρlVb(CA + 1)

DU

Dt
+ ρlVbCL(U − v) × (∇× U) +

1

2
ρlCDA|U − v|(U − v) − ρlVbg, (2.1)

where v is the bubble velocity, g the gravitational acceleration, ρl the liquid den-
sity ≫ ρg the gas density, Vb the bubble volume, and A the projected area of the
bubble. U is the velocity of the undisturbed ambient flow taken at the center of the
bubble. This empirical equation is known to hold approximately for Re > 5. It de-
pends on three coefficients, two of which are a priori unknown: the lift coefficient
CL, and the drag coefficient CD. The same equation holds for spheroidal bubbles
translating about one of their principal axes. For such spheroidal bubbles, CA is
known (Lamb [12]) and becomes 1

2
in the spherical case for all Re (Magnaudet and

Eames [15]). Equation (2.1) takes into account added mass, inertia, shear-induced
lift, viscous drag, and buoyancy. We stress once more that eq. (2.1) is not a good
description for low Reynolds number particles, as then the lift contribution is not
appropriately parameterized and the history force matters, see e.g. Galindo and
Gerbeth [8], Legendre and Magnaudet [13], Magnaudet and Legendre [16], Toegel
et al. [27], Yang and Leal [30]. We will discuss the applicability of eq. (2.1) in
more detail in section 2.2.3.

In a solid-body rotating flow with constant angular velocity ω, see figure 2.1,
the undisturbed flow in cylindrical coordinates is:

U(r) = ωrêϕ, (2.2)

with vorticity ∇ × U = 2ωêz . The dimensionless numbers characterizing the
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Figure 2.1: Balance of buoyancy, viscous drag, shear-induced lift, pressure gra-
dient and added mass forces. The position of the bubble is given in cylindrical
coordinates, in which the rotation and symmetry axis of the cylinder coincide with
the z-axis. The cylinder rotates counter-clockwise with constant angular velocity
ω.

system are the Reynolds, Strouhal, and Froude numbers,

Re =
2Rb|U − v|

ν
, Sr =

2Rbω

|U − v| , F r =
|U − v|2

2Rbg
(2.3)

Here, Rb is the equivalent bubble radius and ν the kinematic viscosity. Note that
the product of the Reynolds and Strouhal numbers results in another “Reynolds”
number, Reω, which is just the Taylor number, viz.

Reω = ReSr =
(2Rb)

2ω

ν
. (2.4)

It is known that the Taylor number is the central dimensionless control parameter
of particle dynamics in low-Re rotating flows (Gotoh [9], Herron et al. [11]). The
Weber number,

We =
2Rbρl|U − v|2

σ
, (2.5)

determines whether the bubble will be spherical or not. When We ≪ 1 the bubble
can be assumed to be spherical.

2.2.2 Drag force

For a clean spherical bubble in steady motion in a uniform flow, the viscous drag
force may be described by introducing the empirical relation due to Mei et al. [20]
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for the drag coefficient CD which matches asymptotic results in the limit of both
low and high Re:

CD =
16

Re

[

1 + [
8

Re
+

1

2
(1 + 3.315Re−

1

2 )]−1

]

. (2.6)

Due to contamination of the liquid, surfactants may collect on the bubble surface
and the zero-shear-stress boundary condition on the surface may no longer be valid.
The viscous drag then increases and, for many surfactants, approaches that of a
solid sphere, as indicated (for example) by the measurements by Maxworthy et al.
[17], Naciri [21], Sridhar and Katz [25]. For a solid sphere one of the most widely
used parameterizations for the drag coefficient is (Clift et al. [6]):

CD =
24

Re

[

1 + 0.15Re0.687

]

. (2.7)

Shear effects also increase the viscous drag force by broadening the near wake.
Numerical simulations of a bubble in a linear shear flow of Legendre and Mag-
naudet [13] reveal a significant dependence of the drag coefficient on the dimen-
sionless shear rate (Sr) for moderate-to-large Re (typically Re ≥ 50). Whereas
the drag remains essentially unaffected for Sr ≤ 0.2, a huge increase is observed
for Sr = O(1). From their numerical data they found the relation:

CD,Sr = CD0(1 + 0.55 Sr2), (2.8)

where CD0 is the drag coefficient in the absence of shear.

2.2.3 Lift force

There have been various theoretical and numerical investigations of the lift force
experienced by rigid spheres and bubbles in vortical flows. For a quasi-steady weak
(i.e. Sr ≪ 1) linear shear flow, Auton [2] analytically predicted the lift coefficient
involved in (2.1) to be 1

2
in the inviscid limit. Auton et al. [3] combined this re-

sult with that of Taylor [26] for the force on a sphere in an unsteady strained flow.
In the limit of weak vorticity and unsteadiness, they showed that Auton’s (1987)
result may simply be added to Taylor’s (1928) result, yielding the inviscid part of
(2.1).

As pointed out above, an experiment similar to the present one was carried
out by Naciri [21]. He experimentally found the lift coefficient to depend on the
Froude number for 0.3 < Fr < 2.6 and parameterized this dependence as:

CN
L =

1

2
(1 + CA) − 0.81√

Fr
+

0.29

Fr
. (2.9)
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The superscript “N” stands for Naciri. The range of Reynolds numbers covered in
these measurements is between 10 and 2500 and the bubble radii ranged from 0.4
to 6 mm.

Similarly, Sridhar and Katz [25] studied bubbles entrained in vortices produced
by a vortex ring generator. This is not solid body rotation, because vorticity decays
away from the core. Moreover the authors used tap water, so that their bubbles
were contaminated by surfactants. The measured lift coefficients were found to
be almost independent of the Reynolds number but dependent on the shear rate
through the following empirical relation:

CSK
L = 0.22 Sr−0.75, (2.10)

for 20 < Re < 80, 0.004 < Sr < 0.09 and bubble radii ranging from 0.25 to
0.4 mm. The measured lift coefficients were substantially larger than theoretical
predictions, which is not very surprising since the low- (resp. high-) Re results
were compared with Saffman’s (1965) result (resp. with Auton’s (1987) result),
both of which were derived for a pure shear flow. Other empirical correlations
are based on numerical simulations of the detailed flow structure around a sphere.
Bagchi and Balachandar [4] studied vortex-induced lift for a rigid sphere at mod-
erate Re in the range 10 to 100 and weak vorticity (0.04 < Sr < 0.1). They found
a significantly enhanced positive lift coefficient for vortex flows in agreement with
the measurements of Sridhar and Katz [25] and again at odds with predictions from
inviscid and low-Re theories.

In a solid-body rotating flow with constant angular velocity ω, both the shear-
induced lift force (FL) and the added mass and inertial force (FA) acting on a
bubble in equilibrium have only radial components, and can be combined in terms
of a rotational lift coefficient. In the inviscid limit, this yields for a bubble at rest

FL + FA = ρlVb

[

CLU × (2ωêz) + (CA + 1)
DU

Dt

]

=

ρlVbω
2re[2CL − (CA + 1)] êr = 2CLΩρlVbω

2re êr, (2.11)

where re is the equilibrium radial position of the bubble (see figure 2.1) and the
rotational lift coefficient is defined as:

CLΩ = CL − 1

2
(1 + CA), (2.12)

For a sphere, (2.12) results in CLΩ = −1

4
, indicating that the direction of the

total lift force is opposed to that found in a simple shear flow. This is because the
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inertial and added-mass forces (which are strictly zero in a linear shear flow) are
centripetal in a solid-body rotation flow and exceed the centrifugal shear-induced
lift force. Magnaudet and Legendre [16] obtained an empirical expression from
numerical simulations for the rotational lift coefficient for a spherical shear-free
bubble in solid-body rotation for 10 < Re < 1000 and for weak to moderate shear
(0.02 < Sr < 0.2), namely

CML
LΩ = −0.25 + 1.2 Re−

1

3 − 6.5 Re−1 + O(Re−1) (2.13)

While (2.1) is widely used to track bubbles over a wide range of Reynolds num-
bers, it must be realized that it is inadequate in the low-Re regime. For instance, in
the flow considered here, the inertial and added-mass contributions provided by the
fluid acceleration are of O(ReSr) (adopting a scaling in which the viscous drag
is of O(1)), so that they are negligibly small compared to contributions like the
history force which is neglected in (2.1). More importantly, the expression of the
shear-induced lift force involved in (2.1) (the second term on the right-hand side)
is specific to moderate or large Re. In contrast to this O(ReSr) lift contribution,
low-Re shear-induced lift forces are of O((ReSr)

1

2 ) as first shown by Saffman
[23]. Hence they provide the dominant hydrodynamic contribution to the radial
force balance. The reason why the low- and high-Re scalings of the shear-induced
lift force are different is because the underlying physics differ from each other. At
large Reynolds number, the shear-induced lift force taken into account in (2.1) re-
sults from the tilting of the upstream vorticity around the bubble which is a body
of finite span, like an airfoil. This tilting induces a nonzero streamwise component
of the vorticity in the wake, which gives rise to a pair of counter-rotating vortices
(Fig. 2.2). The flow created by this pair of vortices results in a force FL which,
in a pure linear shear flow as well as in the solid-body rotation considered here,
tends to push the body towards the high relative velocity side (as pointed out ear-
lier, besides this shear-induced force there is in general another contribution to the
lift which is due to the fluid acceleration DU/Dt, and which in the present flow is
dominant and makes the total lift force centripetal).

In contrast, the low-Re picture relies on the far-field flow in which the dis-
turbance produced by the body (i.e. the force due to the Stokeslet associated with
the body) generates small inertial and viscous contributions of similar magnitude
which in turn produce a small uniform flow in the vicinity of the body. The di-
rection of this uniform flow is generally not aligned with that of the primary flow,
resulting in a lift force. For a bubble or a rigid sphere moving along a simple
shear flow, this force has the same direction as its high-Re counterpart but the two
mechanisms differ. At low Reynolds number, the sign of the force results from
the displacement of fluid particles in the far-wake relatively to the ambient flow,
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w
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Figure 2.2: Sketch of the shear-induced lift mechanism in the high-Re regime. The
vortex pair behind the bubble induces a lift force.

w

re dFw

dFL2

FL1

Figure 2.3: Sketch of the lift mechanism in the low-Re regime. There are two
opposite contributions FL1 and FL2 to the lift force. For a detailed description of
the mechanism see the end of section 2.2.3.

which increases (if the particle is fixed) in the direction of increasing velocities,
resulting in a lateral pressure gradient which tends to move the particle in the same
direction. This was the situation considered in the pioneering work of Saffman.
While determining the sign of the low-Re lift force on the grounds of simple phys-
ical arguments is relatively easy in this case, it is frequently less intuitive when
the particle moves at an arbitrary angle to the base flow or when the latter is not
unidirectional. In the situation we are considering here, two opposite effects are
competing. First, given the linear increase of the undisturbed velocity with the lo-
cal radius r, the velocity difference between the outer (undisturbed) flow and the
defect velocity within the wake is larger on the outward side of the wake than on
the inner side. This effect, similar to that encountered with a fixed particle embed-
ded in a pure shear flow, results in a centrifugal lift force (FL1 in Fig. 2.3). On the
other hand, it must be borne in mind that the wake centreline approximately fol-
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Figure 2.4: Theoretical bubble trajectories for different values of Reω and CL: (a)
Spiral with Reω = 0.1, (b) spiral with Reω = 1, (c) spiral with Reω = 10, (d)
cycloid with Reω = 50 and (e) non-spiral with Reω = 50. In (a)-(d) CL = 0.5,
while in (e) CL = 0.9; Rb = 0.5 mm in all cases. The bubble was released from
(1,0) each time, both x and y axes are in mm.

lows the streamlines of the base flow, i.e. the wake is curved by the external flow.
Then, considering that any slice of wake results in an infinitesimal force δFw per-
pendicular to its plane and directed downstream, it is immediately seen in Fig. 2.3
that the total wake-induced force Fw =

∫

δFw obtained by integrating along the
wake consists of a drag force and a centripetal contribution (FL2 in Fig. 2.3). The
question is then which of the centrifugal and centripetal lift contributions, both of
which are of O((ReSr)

1

2 ), is larger. There seems to be no rational way to settle this
question on the basis of simple qualitative arguments. However the full theoretical
determination of the corresponding transverse force for a fixed sphere embedded
in a solid-body rotation flow was achieved by Gotoh (1990) under asymptotic con-
ditions identical to those considered by Saffman [23]. His result indicates that the
centripetal effect is dominant, which implies that the lift coefficient is negative if
the force is expressed using the inertial scaling of (2.1). Interestingly, the prefactor
of this O((ReSr)

1

2 ) centripetal force is about six times smaller than that of the
Saffman shear-induced lift force, a reduction which may be interpreted as a direct
consequence of the competition between the two opposite contributions FL1 and
FL2. The most important conclusion we can draw from the above considerations is
that the mechanisms responsible for the shear-induced lift force are deeply different
in the high- and low-Re regime. In the particular case of a fixed sphere embedded
in a solid-body rotation flow, we expect this force to change from centrifugal to
centripetal as the Reynolds number is decreased.
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2.2.4 Trajectories and equilibrium bubble position

We now show typical bubble trajectories as they follow from the dynamical equa-
tion (2.1) with assumed drag and lift coefficients. Figure 2.4 shows the trajectory
of the bubble for different values of Reω = (2Rb)

2ω/ν and CL. To calculate these
theoretical trajectories, CA was assumed to be 1

2
and (2.7) was used for CD. For

higher Reω and CL (figure 2.4, (d) and (e)), the trajectories tend to go from spi-
ralling towards cycloidal motion.

Finally, the bubble will reach an equilibrium position (re, ϕe) where all forces
acting on it balance as shown in figure 2.1. The axial position is kept fixed, as for
small enough bubbles there is no axial asymmetry capable of inducing forces acting
in the axial direction. (Note that for large bubbles in the Rb ∼ 1 cm-regime this
can change (Bluemink et al. [5]). From the equation of motion (2.1) we therefore
have two balance equations – one in the radial and one in the azimuthal direction –
which for the equilibrium situation ṙ = r̈ = ϕ̇ = ϕ̈ = 0 can be solved for re and
ϕe,

tanϕe =
8

3

Rb

CDre
(2CL − 1 − CA), (2.14)

re =
−g sin ϕe

ω2(2CL − 1 − CA)
, (2.15)

Here the flow field from (2.2) has been used. The final position of the bubble
(re, ϕe) depends on ω, Rb, ρl, g, and on the kinematic viscosity of the fluid ν
(since it influences the values of CD and CL). Vice versa, the equilibrium position
(re, ϕe) of the bubble directly reveals the lift coefficient CL and the drag coefficient
CD,

CL =
1

2

[

1 + CA − g sin ϕe

reω2

]

, (2.16)

CD = −8

3

Rb

r2
eω

2
g cos ϕe. (2.17)

Rb, ω and ν are the variables that can be adjusted in the experiment. The response
of the system is reflected in the equilibrium position (re, ϕe) (Fig. 2.1), charac-
terized by v = 0. The equilibrium radius can be expressed in the dimensionless
numbers of eqs. (2.3) and (2.5), namely

Re =
2Rbωre

ν
, Sr =

2Rb

re
, F r =

ω2re
2

2Rbg
, We =

2Rbρlω
2r2

e

σ
.

(2.18)
In both simulations and experiments, we find that the bubble equilibrium position
is stable. In experiment, we test the stability by disturbing the bubble at equilibrium
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with another bubble of similar size. Once that second bubble approaches the bubble
at equilibrium, this first bubble is kicked out off the equilibrium position, but then
re-approaches it again. To further support the stability of the equilibrium position,
a linear stability analysis was done for (re, ϕe) in (2.1), indeed confirming stability
as long as ρl > ρb.

2.3 Experiment

2.3.1 Setup, uncertainties, and data analysis

The experimental apparatus is sketched in figure 2.5. A glass cylinder of 500 mm
length and 100 mm inner diameter, is filled with de-ionized water or a water-
glycerin mixture and is rotated with an angular velocity ω in the range of 2−35 rad
s−1 ±0.5% (at high rotation rates mechanical vibrations introduce additional er-
rors). A bubble is injected approximately midway the length of the cylinder. The
bubble size is controlled such that Rb is typically around 1 mm (uncertainty ± 2%),
corresponding to We ≪ 1 in the glycerin/water mixtures and We . 1 in water so
that the bubble shape is essentially spherical. The transient motion of the bubble
and its equilibrium position are recorded with a digital camera.

By image processing, the equilibrium position of the bubble (re, ϕe) is ob-
tained, and from this Re and Sr are determined. The experiments were conducted
with Re in the range 10−2 − 103 and Sr varying between 0.1 and 2. As the ro-
tation rate is decreased, the equilibrium radius re increases. Therefore there is a
lower limitation on ω in order to avoid wall effects. In general, for low-Re and
high rotation rates, equilibrium positions are close to the rotation axis and there-
fore accompanied by low accuracy of the re and ϕe measurements. Considerable
effort was made to reduce the experimental errors and uncertainties to a minimum
for these low-Re experiments. In order to have a reliable measurement of the equi-
librium position, the camera was placed on a 2-way rotatable, x− y− z translation
stage to align the optical axis as precisely as possible with the axis of rotation of
the cylinder. Additionally, the location of the rotation axis in the digital images was
determined by linear extrapolation of the center-positions on the front and back end
of the cylinder. Image analysis demonstrated a final uncertainty in the x, y position
of the bubble center of no more than 0.75 pixels. Finally, the uncertainty in re was
between 3-7%, and the uncertainty in ϕe was between 0.1◦-4◦, depending on the
final bubble position.

For the water-glycerin mixtures, the viscosity ν and density ρl were measured
using standard equipment, and the resulting accuracies are ± 5% and ± 0.1% re-
spectively. The accuracy of the surface tension σ was estimated to be 0.5%. The
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Figure 2.5: Sketch of the experimental setup. (left) Side view: glass cylinder of
length L = 500 mm. The cylinder axis is aligned with the z-axis of the coordinate
system. (right) Axial view: the cylinder has diameter D = 100 mm. The end caps
rest on ball bearings. A DC motor drives the cylinder on the right end cap via a
toothed belt at constant rotation rate ω.

systematic uncertainties of compounded quantities (such as Re, Sr, etc.) were de-
termined from the systematic component uncertainties by the standard error prop-
agation method. For the case of Sr this e.g. leads to ∆Sr

Sr = ∆Rb

Rb
+ ∆re

re
, implying

that the uncertainties in Sr range from 5-9%.
Image sequences are typically recorded at 500 frames per second. The effect

of inhomogeneous background illumination is removed by subtracting an empty
background image, after which a global grey level threshold is applied for image
segmentation. For each frame in the image sequence, the position of the cylinder
center, that of the centroid of the bubble and the length of its major and minor axes
are computed.

2.3.2 Sphericity of bubbles and flow field uniformity

For 60 out of 78 recorded bubbles, the aspect ratio (major/minor axis = χ) was
below 1.1. Data points for which the shape was less spherical (i.e., points cor-
responding to bubbles with an aspect ratio larger than 1.1) are indicated as such
in the figures. The largest observed aspect ratio was 1.66 (for a bubble with
Rb = 1 mm, Re = 622, and ω = 34.9). Note that the aspect ratio of the bub-
bles (oblate spheroids) is taken into account when calculating CA (Lamb [12]) and
hence (through eqs. (2.16) and (2.17)) CL etc. For χ = 1.1 one obtains CA = 0.56,
about a 10% increase as compared to the spherical case.

The approximate sphericity of the bubbles is confirmed by formally calculating
the Weber number according to eq. (2.18). Indeed, all of the bubbles considered in
the present analysis have We ≤ 2.66; the average Weber number is only 0.54. The
bubble with the largest Weber number We = 2.66 also has the largest measured
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Figure 2.6: Flow field around a large bubble (Rb ≈ 1.5 mm) at equilibrium, as
measured by particle image velocimetry (PIV). Note how the influence of the bub-
ble is negligible just a few bubble-diameters downstream. In this case, Sr = 0.21,
Re = 585. PIV images for further cases with different Sr and Re and more details
on the method can be found in ref. Bluemink et al. [5].

aspect ratio, namely 1.66. Results for larger bubbles have already been given in
Bluemink et al. [5]; for these large bubbles the phenomenology is rather different
as they deform to such a degree that off-diagonal elements of the added mass tensor
become relevant, leading to a motion of the bubble along the axis of the cylinder.

The quality of the flow field and the influence of the wake behind the bubbles on
their equilibrium position were studied using particle imaging velocimetry (PIV).
As can be seen in figure 2.6, even for a relatively large bubble, the wake quickly
decays and does not seem to affect the incident flow on the bubble. Therefore we
consider it reasonable to assume that the flow field is in a state of uniform solid
body rotation. Also order of magnitude estimates indicate that indeed the wake
should be negligible for Sr < 1. In our current data Sr is smaller than 3 for all
bubbles and only for 8 bubbles is it between 1 and 3.

creo
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2.4 Experimental results for bubbles in vortical flow

2.4.1 Trajectories

Figure 2.7 shows typical experimental trajectories for Reynolds numbers in the
range from 102 to 622. Figure 2.7 (a) and (b) show spirals; the lower the angu-
lar velocity, the more slowly the bubble moves inwards leading to a more closely
wound spiral. In other words, increasing the shear rate reduces the entrapment
time. Also, as Sr increases, the equilibrium position shifts away from the cylinder
center. As both Re and Sr increase, the trajectories become more complex and re-
semble cycloids as seen in figure 2.7 (c) and (d). Once the bubble has reached the
vicinity of the equilibrium position, it seems to be captured on an erratic trajectory.
We interpret this motion as jitter due to lack of stability in ω and in the horizontal
alignment of the system. Note that both spiraling and cycloidal motions are found
in experiments (figure 2.7) as well as in simulations (figure 2.4). For both, we find
that cycloidal motion is predominant for large Re and/or Sr. Attempts were made
to numerically integrate (2.1) using experimental data as inputs, thus providing
a direct comparison between numerics and experiment. The agreement between
the numerical integration and experiment was reasonable at best, indicating that
the models for CL(Re, Sr) input into the numerical integration are not accurate
enough. Additional problems in these comparisons arise from the fact that “real”
bubbles have a finite eccentricity which introduces added mass components parallel
to the direction of bubble motion, not accounted for in the numerical simulations.
In section 2.5 we re-address the difficulty of numerically reconstructing the whole
bubble trajectory.

2.4.2 Equilibrium positions

Drag coefficient

Figure 2.8 shows the measured dependence of the drag coefficient CD on the
Reynolds number, as calculated from the equilibrium position (cf. eq. (2.17)). Ad-
ditionally, the drag curves for a clean spherical bubble (2.6) and a solid sphere
(2.7) in a uniform flow are shown. We would expect the drag coefficients to fall in
between the two lines indicating a certain amount of contamination of the system.
However, the measured drag coefficients (open symbols in figure 2.8) are system-
atically above the solid drag curve. As indicated by the error bars, measurement
errors cannot explain this effect. Taking a closer look at Sr for the different data
points reveals that the deviation from the solid drag curve is larger when Sr is
larger. Assuming that the drag coefficient depends on the shear rate as given in
(2.8), the measured CD,Sr coefficients can be shear-compensated, i.e. we can es-
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Figure 2.7: Typical experimental trajectories of the bubble: (a) Re = 102, ω =
15 rad s−1, Rb = 0.4 mm, Reω = 10; (b) Re = 186, ω = 23.3 rad s−1, Rb =
0.7 mm, Reω = 45; (c) Re = 400, ω = 35 rad s−1, Rb = 0.7 mm, Reω = 69; (d)
Re = 622, ω = 35 rad s−1, Rb = 1.0 mm, Reω = 140. Both axes are in mm, and
the center of the cylinder corresponds to x = 0, y = 0.
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Figure 2.8: Drag coefficient versus Reynolds number. The drag coefficients CD

are indicated by open symbols. The corresponding closed symbols indicate the co-
efficients CD,Sr with shear correction according to (2.8). The solid line represents
the drag coefficient for solid spheres, (2.7). The dashed line is for clean spherical
bubbles according to (2.6).

timate the drag coefficient CD0 that the bubble would have if it were embedded in
a uniform flow. The result of such a compensation is shown in figure 2.8 (closed
symbols); compensated drag coefficients tend to fall in between the drag curves for
a clean spherical bubble and a solid sphere, indicating that the shear in solid body
rotation modifies the drag in a qualitatively similar fashion as in a linear shear flow.

Lift coefficient

Figure 2.9 shows the dependence of the lift coefficient on Sr, over three decades of
Sr. In this plot we compare our results with available data from Sridhar and Katz
[25] and Naciri [21]. There is some discrepancy between our measurements and
Sridhar & Katz’s extrapolated fit, but this discrepancy decreases with increasing
Re.

Figure 2.10 shows the available data versus Fr1/2. It summarizes the measure-
ments of Naciri and our data in glycerin-water mixtures and water. The empirical
fit suggested by Naciri does not hold for our data, and hence the Froude number
does not seem to be an adequate parameter to describe our results.

Figure 2.11 shows the dependence of the lift coefficient on Re. While Srid-
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Figure 2.10: −FrCLΩ versus Fr1/2: glycerine-water results (◦ for a bubble aspect
ratio χ < 1.1 and • for χ > 1.1), results for water (� and △ for χ < 1.1 and
χ > 1.1 respectively) and Naciri’s results (♦) taken from Fig.II.6 in Naciri [21].
Superposed is the empirical fit suggested by Naciri (2.9), which cannot describe
the present data.
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har and Katz [25] noted that their data for CL did not seem to depend on Re, our
measurements indicate a strong dependence on Re at low Re. Moreover the shear-
induced lift coefficient CL is found to be negative for Re < 5 (a Re range in which
Sridhar & Katz did not measure CL), as the rotational lift coefficient CLΩ < −3

4

in this range (cf.(2.12)). Figure 2.11 contains data from our experiments (trian-
gles & squares) and numerical data (circles) obtained by Magnaudet and Legendre
[16]. For Re > 5 both the experiments and the simulations are in good agree-
ment with the high-Re theoretical prediction. In particular, for large Re they both
converge to the asymptotic value of CLΩ = −1

4
corresponding to CL = 1

2
. For

Re < 5 the numerical results show a strongly decreasing trend for CL which be-
comes negative for small enough Re. The experimental data show a similar but
even more pronounced trend, the shear-induced lift coefficients becoming nega-
tive when Re < 5. Hence it appears that the transition between the high-Re and
low-Re mechanisms for the generation of the shear-induced lift force discussed in
Sec.2.2.3 occurs around Re = 5. This is not totally unexpected, as Magnaudet and
Legendre [16] observed the same trend in a linear shear flow. More precisely they
found the low-Re scaling involved in Saffman’s (1965) and McLaughlin’s (1991)
predictions to apply for Re < 2, approximately, and the two regimes to match
around Re = 5.

According to the low-Re theory, CLΩ should be proportional to (ReSr)−
1

2

in the corresponding regime, provided (Sr/Re)
1

2 is much larger than unity (Go-
toh [9], Herron et al. [11]). However our experimental values for the quantity
CLΩ(ReSr)

1

2 in the range Re < 5 are not constant and still decrease significantly
as Re goes to zero. This may be due to the fact that the ratio Sr/Re is not large
enough in several cases or to the influence of the bubble wake, keeping in mind
that re tends to zero with Re so that the incident flow “seen” by the bubble is not
strictly in solid-body rotation. Finally, the experimental accuracy on re and ϕe

may also be questioned in this regime. We plan to perform new experiments in this
regime to clarify this point.

2.5 Conclusion

In conclusion, the motion of a single bubble in a solid body rotational flow was
studied experimentally. Drag and lift coefficients have been obtained from the
measured equilibrium position of the bubble. The dependence of the drag and lift
coefficients on shear rate and Reynolds number has been studied over a wide range
of Sr and Re. The two main findings of this paper are: (i) there is a significant
shear dependence of the drag coefficient for strong shear and (ii) there is a remark-
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Figure 2.11: Rotational lift coefficient CLΩ versus Reynolds number Re. The
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that CA = 1/2.
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able change of sign in the lift force in solid body rotation around Re = 5. The
aforementioned strong shear dependence of CD is in agreement with previous nu-
merical predictions by Legendre and Magnaudet [13]. Even though their prediction
was made for linear shear flow, it seems to be valid for the case of solid body ro-
tation also. We find a significant dependence of the lift coefficient on Sr and Re,
especially for strong shear and small Re. For Re > 5 we find that the total (ro-
tational) lift coefficient CLΩ is negative but its values are larger than −3

4
, yielding

positive values of the shear-induced lift coefficient CL. This is in agreement with
predictions from inviscid theory (Auton [2]). In contrast, for Re < 5 our experi-
ments show negative shear-induced lift coefficients. That the lift force on a fixed
sphere (solid particle or bubble) embedded in a solid-body rotation flow is negative
(i.e. centripetal) at low Reynolds number is in line with Gotoh’s (1990) theoretical
prediction which is the counterpart of Saffman’s prediction for the flow configura-
tion considered here. Further improvements of the experimental setup will allow
us to achieve more precise measurements in this low-Re range. But note again
that equation (2.1) is not necessarily a good approximation for that low Re regime:
First, the history force has been omitted and second, the lift force parametrization
is inappropriate for small Re.

What would be desirable is to reconstruct the whole bubble trajectory with
the help of equation (2.1) and the values obtained for the lift and drag coefficients
from our analysis of the equilibrium position. Right now, there is no way to achieve
this. The accuracy in CL and CD is simply not sufficient and additional terms in
(2.1) may also play a role. In addition, in a non-stationary situation the bubble’s
wake and hence the forces may differ from its steady structure. Presently, in the
numerical simulations these small imperfections accumulate during the spiralling
process towards the equilibrium which can take minutes. Therefore, only a local
comparison of the bubble trajectories or a comparison between bubble trajectory
characters gives satisfactory agreement between experiment and numerics.
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Chapter 3

Particle rotation‡

It is known that, in a linear shear flow, fluid inertia causes a particle to spin more
slowly than the surrounding fluid. The experiments in this chapter, performed with
a sphere with fixed center, but free to rotate in a fluid undergoing solid-body ro-
tation around a horizontal axis, indicate that the spin rate of the sphere can be
larger than that of the flow when the sphere is sufficiently far from the axis. Numer-
ical simulations at Reynolds number 5 ≤ Re ≤ 200 confirm this observation. To
gain a better understanding of the phenomenon, the rotating flow is decomposed
into two shear flows along orthogonal directions. It is found numerically that the
cross-stream shear has a much stronger effect on the particle spin rate than the
streamwise shear. The region of low stress at the back of the sphere is affected by
the shear component of the incident flow. While for the streamwise case the shift is
minor, it is significant for cross-stream shear. The results are interpreted on the ba-
sis of the effect of the shear flow components on the quasi-toroidal vortex attached
in the sphere’s near wake. The contributions of streamwise and cross-stream shear
to the particle spin can be linearly superposed for Re = 20 and 50.

————————————————————————————————

3.1 Introduction

The behavior of particles or bubbles in a flow is one of the most fundamental prob-
lems of fluid mechanics. While a considerable body of knowledge exists in the
limits of vanishing Reynolds numbers (see e.g. Happel and Brenner [26], Kim
and Karrila [33], Lamb [36]) or inviscid flow (see e.g. Auton et al. [3], Lamb

‡J.J. Bluemink, D. Lohse, A. Prosperetti and L. van Wijngaarden, A sphere in a uniformly rotating
and shearing flow, J. Fluid Mech. 600, 201-233 (2008).
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(a) (b)

Figure 3.1: Sphere in solid-body rotation: (a) geometry, gravity in y-direction, (b)
a sphere (indicated by the arrow) in its equilibrium position in the small cylinder.

[36], Milne-Thompson [46]), the investigation of finite-Reynolds-number effects
has been limited to simple situations such as steady uniform or shearing flows.
Even for these relatively simple configurations, however, our understanding is far
from complete.

The complexity of the general problem suggests that a profitable way to pro-
ceed is to consider a variety of flows with well-defined characteristics in the hope of
building a broadly applicable synthesis. Rotational flows, which are studied in the
present paper, are particularly interesting in view of their widespread occurrence.
It appears impossible, for example, to achieve a satisfactory description of particle
dispersion in turbulence, or of the behavior of fluidized beds, in the absence of a
good understanding of the drag and lift forces in such flows.

Here we study the behavior of a sphere in a fluid undergoing solid-body rotation
(see figure 3.1a). The center of the sphere is fixed while it is allowed to rotate in
a torque-free state. Experimentally, the situation is realized by placing a buoyant
sphere in a liquid-filled cylinder rotating around a horizontal axis (see figure 3.1b)
and results up to Reynolds numbers Re ≃ 800 are shown, with

Re =
2RU0

ν
. (3.1)

In this equation R is the sphere radius, U0 the undisturbed flow velocity at the
sphere center and ν the fluid viscosity. Numerically, we determine and explain the
dependence of the particle spin rate and lift force on the Reynolds number Re up
to 200 and study the effects of the individual streamwise and cross-stream compo-
nents from which the motion of a fluid in solid-body rotation can be synthesized.
We find that streamwise and cross-stream shear have very different effects on the
particle spin. For solid-body rotation, the only other study we are aware of in which
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the particle is allowed to freely rotate at sizeable Reynolds number is Bagchi and
Balachandar [5], whose results, however, are quite different from ours. In partic-
ular, their conclusion that the particle spin rate is never greater than that of the
ambient fluid is at variance with our experiments and calculations and for the time
being remains unexplained.

Earlier work on rotating flows includes Herron, Davis, and Bretherton [28]
and Gotoh [25] who calculated the hydrodynamic force acting on a sphere im-
mersed in a rotating flow at low Reynolds number. The lift force in a rotational
inviscid flow – in which, of course, the flow does not induce any rotation of the
sphere – has been investigated in Lighthill [39], Auton [2], Auton et al. [3] (see
also Drew and Lahey [22]). For the case of bubbles, Naciri [49] and Sridhar and
Katz [58] studied experimentally situations similar to the one considered here and
measured a lift coefficient considerably larger than that predicted by the available
theories. Similar results have more recently been reported in van Nierop et al. [64].
As discussed in that paper, in the low Reynolds number limit, the hydrodynamic
force appears to be very sensitive to the flow type.

Several authors have studied the trajectory of particles in fluids in solid-body
rotation. Experimental results have been reported by, for example, Roberts, Ko-
rnfeld, and Fowlis [55] and Mullin et al. [48]. Annamalai and Cole [1], Raju and
Meiburg [54], Gao, Ayyaswamy, and Ducheyne [23] and Coimbra and Kobayashi
[16] have studied the problem theoretically, and an analysis of the stable equilib-
rium points at low Reynolds number has been given by Paradisi and Tampieri [52],
Coimbra and Kobayashi [16] and Kobayashi and Coimbra [34]. A brief study of
the equivalent problem for bubbles was presented by Lohse and Prosperetti [41].

Our focus is on the particle spin and, therefore, quite different from that of all
these authors. Furthermore, most of the previously cited theoretical papers treated
the particles as points using parameterizations of the hydrodynamic force while we
actually calculate it from first principles by solving the Navier-Stokes equations.

Two other classes of flows involving particle spin or fluid rotation have been
studied. In one of them, the particle translates in the direction of the rotational axis
of the fluid (Candelier et al. [12, 13], Childress [14], Kim and Choi [32], Wang et al.
[65], Weisenborn [67]). In another group of papers (Barkla and Auchterlonie [8],
Dennis et al. [21], Oesterlé and Dinh [51], Rubinow and Keller [56]) the particle
spins about an axis perpendicular to the incident flow, as in the present work, but the
particle angular velocity is prescribed rather than resulting from the fluid dynamic
interaction as here. Generally speaking, all these papers find a strong effect of
particle spin on the hydrodynamic force, and especially on the lift. However these
situations are evidently different from the one considered in this paper.

Solid-body rotation can be decomposed into two shearing flows along orthog-
onal directions. It is therefore of interest to consider such flows. The flow field in
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a unidirectional simple shear is given by

U(y) = 2ωyêx, (3.2)

where U is the undisturbed fluid velocity and 2ω is the shear rate. If no external
torque acts on the particle, its angular velocity Ωp will eventually adjust so as to
result in a vanishing hydrodynamic torque. Lin, Peery, and Schowalter [40] studied
this situation for very low values of the Taylor number defined by

Ta =
2R2ω

ν
. (3.3)

This quantity may be considered as the ratio of the characteristic time for rotation
to that for viscous diffusion and is used later as a dimensionless measure of the
liquid angular velocity. The spin rate calculated by Lin et al. [40] is

Ωp

ω
= 1 − 0.3076 Ta3/2 + o(Ta3/2). (3.4)

Poe and Acrivos [53] found experimentally that this expression is adequate pro-
vided Ta < 0.1. Mikulencak and Morris [45] investigated the same situation nu-
merically for 0 < Ta < 100. For Ta > 1 a steep decrease in the spin rate was
seen with the Taylor number. Thus, the particle angular velocity decreases as the
fluid inertial effects, as measured by the Taylor number, increase. Note that any
difference between the particle and fluid rotation rates must be due to fluid inertia,
which is of course an immediate consequence of Faxèn’s second theorem which
states that, at vanishing Reynolds number, the angular velocity Ωp of a torque-free
sphere is the same as the local angular velocity of the ambient fluid (see e.g. Happel
and Brenner [26], Kim and Karrila [33]).

The case in which the flow incident on the particle consists of the superposition
of a uniform plus a streamwise shearing flow

U(y) = (ωy − U0)êx, (3.5)

where U0 represents the uniform flow component, has been studied by, among
others, Saffman [57] and McLaughlin [43] for small Reynolds numbers. Saffman
[57] finds that the sphere angular velocity is not affected by the shear component
to lowest order. At higher Reynolds number the numerical results of Bagchi and
Balachandar [5] can be fitted by

Ωp

ω
=

1

2

(

1 − 0.0364Re0.95
)

(3.6)
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for 0.5 < Re ≤ 5 and

Ωp

ω
=

1

2

(

1 − 0.0755Re0.455
)

(3.7)

for 5 ≤ Re ≤ 200. Again, the particle spin rate is seen to decrease as fluid inertia
increases.

In addition to the already mentioned papers by Saffman [57] and McLaughlin
[43], several other authors have studied the forces on particles in linear shear flows.
Dandy and Dwyer [17] calculated the force on a non-rotating particle while Bagchi
and Balachandar [5] allowed the particle to rotate freely as was seen in (3.6) and
(3.7). At low Reynolds number, as indicated by Mei [44], the spin rate has little
effect on the lift force. This is not the case for Reynolds numbers in the intermedi-
ate range as shown e.g. by Kurose and Komori [35], who studied a particle with a
prescribed spin rate.

In this paper we study the steady-state spin rate of torque-free particles im-
mersed in a class of flows ranging from unidirectional shear to solid-body rotation.
For the latter case, we present both experimental and numerical results, while only
numerical means are used for the other cases. Unexpectedly, the spin rate of a
spherical particle trapped in a liquid rotating in solid body motion is found to ex-
ceed the angular velocity of the liquid in a large part of the parameter range. The
only other reports of spheres rotating faster than the fluid are in turbulent flows (see
e.g. Mortensen et al. [47], Ye and Rocco [69]). These data however were acquired
in many-particle systems and it was the mean spin that exceeded the mean angular
fluid velocity. Mortensen et al. [47] ascribe this to preferential particle concen-
tration. A somewhat surprising new result in this work is that the effects of the
cross-stream shear and the streamwise shear on particle spin rate and shear stress
at the particle surface can be linearly superposed for the Reynolds number range
studied.

3.2 Preliminaries

In suitable parameter ranges, a buoyant spherical particle or bubble finds an equi-
librium position when inserted in a fluid-filled horizontal cylinder rotating with
constant angular velocity ω as in figure 3.1a (see e.g. Bluemink et al. [9], Coimbra
and Kobayashi [16], Lohse and Prosperetti [41], Naciri [49], Paradisi and Tampieri
[52], van Nierop et al. [64]). At this position all forces – buoyancy, drag, added
mass, pressure gradient and lift – balance. While its center remains fixed, the par-
ticle is of course free to rotate.

In addition to the particle radius, R, and density, ρp, the equilibrium position
of the particle in a rotating liquid depends on ω, the angular velocity of the fluid,
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ν and ρ, the kinematic viscosity and density of the liquid, and g, the acceleration
due to gravity. Two dimensionless quantities can be formed then, in addition to the
Taylor number defined in (3.3). We take

Ga =
2R

√

2R(1 − ρp/ρ)g

ν
,

ρp

ρ
. (3.8)

The Galilei number Ga is a Reynolds number based on the characteristic velocity
induced by gravity; its use is particularly convenient as, for a given liquid and
particle radius, it is a constant.

More standard dimensionless parameters, such as the Reynolds number, can
be added to the above mentioned ones to characterize the flow environment seen
by the particle. Although a dependent variable, the distance re of the equilibrium
position from the axis of rotation is important for this purpose. With U0 = ωre the
Reynolds number defined earlier in (3.1) becomes

Re =
2RU0

ν
=

2Rreω

ν
. (3.9)

We also introduce a vorticity parameter

Srω =
2ωR

U0

=
2R

re
. (3.10)

Lohse and Prosperetti [41] presented a simplified analysis of the problem using
standard large-Reynolds-number expressions for the added mass and lift forces on a
bubble (see 3.14). After adjusting for the particle density and the no-slip boundary
conditions at the interface, that analysis is also applicable to a solid sphere and
gives the following result for re

re

2R
=

2
√

2

3





√

(

K

CD

)4

+

(

3

8CD

)2 (

Ga

Ta

)4

−
(

K

CD

)2





1/2

, (3.11)

in which CD is the drag coefficient and K = 2CL − 1 − CA is composed of the
added mass coefficient CA, equal to 1/2 in potential flow, and of the lift coefficient
CL, equal to 1/2 in inviscid flow (Auton [2]). Clearly, as Ta → ∞, we have re →
0, i.e. the particle moves towards the axis of rotation. If we approximate CD by a
constant, which is a rough estimate appropriate in the upper range of the Reynolds
numbers encountered in the experiments described in the next section, for small
values of Ta (3.11) gives

Re =
re

R
Ta = 2

Ta

Srω
≃ 2Ga√

3CD

[

1 − 4

3CD

(

KTa

Ga

)2
]

. (3.12)



3.3. EXPERIMENT 39

This estimate shows that, asymptotically, Srω increases proportionally to Ta (i.e.
to ω), while the Reynolds number reaches the limiting value 2Ga/

√
3CD, which

is readily seen to coincide with the terminal velocity of the particle in still fluid, as
expected. Before this limit is reached, however, Re increases as the Taylor number
decreases.

3.3 Experiment

Experiments were conducted by placing a low-density polyethylene spherical parti-
cle (density ρp = 920 kg m−3) in a transparent liquid-filled cylinder rotating around
a horizontal axis. Most of the data were taken in a 0.1 m diameter glass cylinder
(see figure 3.1b) but, in order to rule out wall effects, we also took some data in a
larger, 0.5 m diameter Perspex cylinder; both cylinders were 0.5 m long. The larger
cylinder had a motor with a controlled feed-back loop which permitted setting the
angular velocity with great accuracy.

Particles with radii R = 3.1 and 4.0 mm were used in the experiment. They
were marked with paint so as to facilitate the measurement of their angular velocity
from image sequences taken at a speed of 50 f.p.s. Several readings of the angular
velocity of the particles and of the small cylinder were taken from each image
sequence; the error bars shown in figures 3.3–3.5 represent the range of the data.

The liquids were water and a mixture of water and 75% glycerine by weight;
the dynamic viscosity of the mixture was measured with a viscometer to be µ =
0.0347 kg m−1 s−1 and the density 1180 kg m−3.

To be certain that the flow field as seen by the particle is solid-body rotation,
sufficient time for spin-up must be allowed. In figure 3.2 the velocity profiles
for different spin-up times for a cylinder with radius a and height h, according
to Wedemeyer [66], are shown. In the figure v0 indicates the velocity of the fluid
and it is normalized by the velocity at the cylinder wall. The time t allowed for
spin-up is written in non-dimensional form as kωt, where ω is the cylinder angular
velocity and k = 0.443 (2a)/h

√

ν/(a2ω). For kωt = 0.5 the fluid in the cylinder
is far from solid-body rotation, whereas for kωt = 3 it is quite close. The lines in
the figure are valid when the viscous terms are negligible, i.e. when ka2ω/ν ≫ 1.
The value of ka2ω/ν is indeed much larger than 1, so the above estimate is valid.
For a maximum error of 1% in velocity compared to the velocity field for solid-
body rotation, the spin-up time ts for a fluid in a rotating cylinder starting from rest
can be estimated to be of the order of (see e.g. Wedemeyer [66])

ts =
10.3954

ω

√

a2ω

ν

h

2a
. (3.13)
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Figure 3.2: Velocity profiles for different spin-up times.

For the liquids used in this experiment, this relation gives estimates of a maximum
spin-up time of 4 min in water and 6 min in the glycerin–water mixture for both
cylinders. Data were taken well past these waiting periods. Furthermore, in several
cases, two sets of data were taken an hour or so apart, letting the cylinder rotate in
the intervening time; no differences (beyond the usual experimental fluctuations)
were found.

For experiments performed in water, the Reynolds numbers were between 200
and 1000. Most of these experiments are well above the critical Reynolds num-
ber at which the flow past a rising sphere loses axial symmetry (Jenny, Dusek, and
Bouchet [30], Natarajan and Acrivos [50]). Unlike the glycerin case, where the par-
ticle center remains stationary, in the water experiments we observed the particles
precessing around their equilibrium position, which is probably a manifestation
of a related instability. The spin rate reported was measured for this precessing
particle.

The diamonds in figure 3.3 show the measured particle angular velocity Ωp

normalized by the cylinder angular velocity ω as a function of Ta. The filled
symbols are data taken with the 4 mm radius sphere, while the open symbols refer
to the 3.1 mm radius sphere. The difference between the two sets illustrates the
effect of the parameter Ga defined in (3.8). These data clearly indicate that there
is a broad range of Ta values for which the particle rotates faster than the cylinder,
i.e. faster than the undisturbed flow. This is surprising, since, as we have seen
in § 3.1, the known results for streamwise shear would suggest that an increase
of inertial effects brings about a decrease in the particle spin rate compared to the
ambient rotation. Moreover, to the best of our knowledge, hitherto no such results
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Figure 3.3: Particle spin rate Ωp normalized by the liquid angular velocity ω versus
Ta = 2ωR2/ν for the experiments in water. The diamonds are data from the
smaller cylinder, triangles from the larger cylinder. The filled and open symbols
are for particles of radius 4.0 mm and 3.1 mm, respectively. The particle Reynolds
number corresponding to these data is in the range of 200 to 1000.

have been reported.
As the cylinder rotation rate is decreased, the particle equilibrium position

moves away from the axis in such a way that Re increases as predicted by (3.11)
and (3.12). As shown in figure 3.3, the normalized particle angular velocity in-
creases as well. To examine the possibility of wall effects, we took data in the
same Taylor-number range in the larger cylinder. These data, shown by the trian-
gles in figure 3.3, are quite consistent with the other ones, which proves that the
observed results are not wall effects. The maximum value of Ωp/ω, about 2.1, is
reached for a Reynolds number that can be estimated as 650±100. It should be
noted that this is smaller than the Reynolds number for the terminal velocity in still
fluid which would be 709 and 1090 for the 3.1 and 4.0 mm spheres, respectively.
As the Taylor number is further decreased, Ωp/ω rapidly falls and the precession
of the particle is less regular. It is speculated below in § 3.9 that these features may
have some analogy with the onset of unsteadiness in the case of a sphere rising in
a quiescent fluid as the Reynolds number is increased.

When the Taylor number is increased beyond 400 or so, the particle moves
closer to the center, the Reynolds number decreases, and the vorticity parameter
Srω increases. Correspondingly, Ωp/ω falls below 1, reaches a minimum, and
then starts rising again toward 1, which is the expected normalized spin rate at very
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Figure 3.4: Normalized particle spin rate Ωp/ω versus Ta = 2ωR2/ν for the
glycerine–water mixture in the smaller cylinder; the particle radius was 4.0 mm.
The corresponding Reynolds number is between 2 and 50, approximately.

large angular velocities when the particle center is essentially on the rotation axis.
For the data in figure 3.3 Srω ranges between about 0.1 and 0.3 to the left of

the peak and between about 0.3 and 1 in the descending part of the curve. These
values are not very accurate due to the difficulty of getting an accurate reading of
re, but they do nevertheless demonstrate the trend of the data.

Figure 3.4 shows the results obtained in the smaller cylinder with the glycerine–
water mixture. The resulting Reynolds numbers were an order of magnitude smaller
than with water but the effect, although reduced, is still present: as Ta decreases,
the particle moves away from the axis and its normalized spin rate increases above
1. This finding suggests that the precessional motion of the sphere observed in wa-
ter does not qualitatively affect the phenomenon. The diamonds in figure 3.5 show
the same data plotted versus the Reynolds number. As before, a precise measure-
ment of the equilibrium position re is difficult and the error bars accordingly rather
large; nevertheless, the normalized particle spin rate is greater than 1 at sufficiently
low rotation rates. At higher rotation rates the particle moves closer to the axis,
the vorticity parameter Srω increases, and Ωp/ω falls below 1 as before. The fact
that this transition from values larger than 1 to values smaller than 1 is observed
for very different Reynolds numbers suggests it is mainly dependent on Srω reach-
ing a sufficiently large value, which is comparable in the two cases of water and
water–glycerine.

In summary, these experiments conclusively prove that, in a portion of the
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Figure 3.5: The same data for the normalized particle spin rate of figure 3.4 (di-
amonds) are plotted versus Re. The triangles are numerical results discussed in
§ 4.1.

parameter range (Re, Srω), the normalized angular velocity of a particle increases
beyond 1 with distance from the axis, i.e. as the flow velocity seen by the particle,
and thus Re, becomes sufficiently large. This trend prevails up to Re ∼ 650, after
which the normalized particle spin rate rapidly decreases. Thus, except when the
particle is very close to or very far from the cylinder axis, the particle angular
velocity is higher than that of the undisturbed flow.

3.4 Numerical method

To better understand the behavior of the particle angular velocity in solid-body
rotation compared to simple shearing flow we carried out numerical simulations
with different types of flow, described in the next section. In this section we briefly
explain our numerical method.

We used the three-dimensional Navier-Stokes solver Physalis (Zhang and Pros-
peretti [70]). The underlying method rests on the observation that, owing to the
no-slip condition, the flow in the immediate neighborhood of a particle differs at
most slightly from a rigid-body motion and can therefore be linearized about such
a motion. The resulting set of equations is formally similar to the Stokes equa-
tions, for which a general solution (valid only very near the particle) can be written
down in terms of an expansion in spherical harmonics with undetermined coeffi-
cients (Happel and Brenner [26], Kim and Karrila [33]). These coefficients are
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calculated iteratively by matching, in the immediate neighborhood of the particle,
the analytic solution obtained in this fashion to a finite-difference solution. The
advantage of this procedure is that it avoids the need to deal with the complex ge-
ometry of the actual particle boundary. The finite-difference solution is obtained
on a standard Cartesian grid by a second-order projection method. The solution
obtained has therefore a dual nature, spectral in a region with a thickness of the
order of the mesh size surrounding the particle, and finite-difference further away.
Useful features of the technique are that fewer nodes per particle radius are suffi-
cient for an accurate solution and that the no-slip condition at the particle surface
is satisfied exactly. Furthermore, the low-order expansion coefficients are directly
proportional to the hydrodynamic force and couple acting on the particle. This
property eliminates the need to calculate these quantities by integration of the fluid
stress over the particle surface. For details about this method the reader is referred
to Zhang and Prosperetti [70] and for applications to Zhang, Botto, and Prosperetti
[71].

For reasons of computational time, most of the simulations were conducted for
Re = 20 and Re = 50, and a few additional ones were carried out for Re = 5, 35,
100 and 200. Decreasing the Reynolds number below 5 would require a very large
computational domain to avoid boundary effects, while higher Reynolds numbers
require a more refined grid. We found that in the Reynolds number range between
5 and 50 it was possible to perform simulations with sufficient domain size and
resolution in a reasonable amount of computing time.

The particle center was placed at the center of the computational domain which
was a cuboid (see figure 3.6 for a cross-section of the domain). Unless stated
otherwise, its dimensions were 20 particle radii in the x- and y-directions and at
least 16 in the z-direction, parallel to the axis of rotation. For Re = 20, we found
that doubling the domain size changed the particle spin rate by no more than 0.4%,
the drag coefficient by about 1% and the lift coefficient (defined below in (3.14))
by about 3%. For Re = 5 increasing the domain size from 18 to 22 particle radii
in each direction changed the drag coefficient by 1.4%, while the (much smaller)
lift coefficient underwent a change of over 30%. Thus, although the results for Re
= 5 may have a somewhat lower accuracy, we conclude that our domain size was
sufficient for the other cases.

It has been shown in Zhang and Prosperetti [70] that, for a sphere in uniform
flow, 8 nodes per particle radius give an excellent accuracy at Re = 50 and an
acceptable one even at Re = 100. We have used the same number of nodes up to
Re = 50. To test the resolution, for Re = 50 we refined the grid by a factor of
2 in each direction and found that the spin rate and the drag and lift coefficients
changed by about 1% in the case of solid-body rotation. For a linear shear flow
the absolute differences were comparable but, since in this type of flow the lift
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Figure 3.6: Cross-section of the computational domain. The boundaries where
Dirichlet boundary conditions are applied are solid, the boundary where von Neu-
mann boundary conditions are applied is dotted.

coefficient and spin rate are much smaller, the relative differences were up to 8%
for the particle spin rates and up to 13% for the lift force, while they remained at
the 1% level for the drag coefficient. Changing the resolution for the cross-stream
shear and straining flow yielded differences below the ones of the linear shear flow.
For the simulations where Re > 50, 16 nodes per particle radius were used.

The accuracy of the spectral representation of the solution in the region near the
particle depends on the order N of truncation of the spherical harmonic expansion,
i.e. on the number of coefficients retained in the calculation (Zhang and Prosperetti
[70]). It was found that N = 1, which amounts to retaining only 10 coefficients,
yields inaccurate results. For Re = 50, truncation at N = 2 (25 coefficients) or N
= 3 (49 coefficients) gave a difference of 2% in the particle spin rate, 1% in the lift
coefficient, and 0.2% in the drag coefficient. Therefore, the calculations were done
with N = 2 and 25 coefficients.

The undisturbed flow velocity was prescribed on all the faces of the compu-
tational domain parallel to the rotation axis except the bottom one (figure 3.6).
On the bottom surface the derivative of the horizontal velocity was set equal to
the corresponding derivative of the undisturbed velocity (i.e. −αω, see (3.15)),
while the normal derivative of the normal velocity was set to zero. Periodicity
conditions were imposed on the bounding planes normal to the rotation axis (z-
direction). For the auxiliary pressure variable, the standard von Neumann condi-
tions of the second-order projection method (see for example Brown, Cortez, and
Minion [10], Zhang and Prosperetti [70]) were used.
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3.5 Numerical results for solid-body rotation, varying Re

A first set of simulations was conducted for a particle immersed in a liquid in solid-
body rotation with prescribed values of Re and Srω. In this case, as in the other
simulations described later, the particle center was kept fixed but the particle was
allowed to freely rotate.

Although it would have been desirable to conduct a simulation releasing the
particle and allowing it to find its equilibrium position, the huge amount of compu-
tational time required prevented us from doing this. Thus, the particle was placed
to the left of, and at different distances from, the rotation axis (figure 3.7a), de-
pending on the desired shear rate. In principle, for a given Reynolds number and
shear rate, (3.11) can be solved to give a specific value of Ga/Ta, which suggests
that the situations we simulate are physically realizable.

Figure 3.7: Examples of the flow fields of the family of flows (3.15): (a) solid-body
rotation, α = 1, β = 1; (b) linear shear, α = 0, β = 1; (c) strain, α = -1, β = 1; (d)
cross-stream shear, α = 1, β = 0.

The symbols in figure 3.8 show the drag on the sphere for different Reynolds
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Drag coefficient Re = 5 Re = 20 Re = 50

Dennis and Walker [20], uniform flow 7.21 2.73
Standard drag curve (Clift et al. [15]) 6.98 2.61 1.54
Magnaudet et al. [42] 6.92 2.71
Bagchi [4] 1.57
Present, uniform flow 7.42 2.77 1.59
Present, non-rotating particle
in solid-body rotation, Srω = 0.1 2.79 1.62
Present, rotating particle
in solid-body rotation, Srω = 0.1 7.83 2.80 1.63
Present, rotating particle
in solid-body rotation, Srω = 0.04 1.59

Table 3.1: Drag coefficient, comparison of present simulations with previous re-
sults.

numbers for both rotating and non-rotating particles. The differences in the drag
coefficient are so small that they are not visible here. The solid line is the standard
drag curve for uniform flow, which predicts a slightly smaller drag. Numerical
values are given in table 3.1 together with those of other authors and our own for
uniform flow.

The results for the normalized spin rate Ωp/ω vs. the Reynolds number are
shown in figures 3.5 and 3.9. Some numerical values are given in table 3.2. All our
numerical results indicate that the normalized spin rate Ωp/ω is above 1 in the case
of a fluid in solid-body rotation. Thus the particle spins faster than the surrounding
fluid, just as previously seen in experiments. As mentioned before, this behavior
is at variance with that reported in the simulations of Bagchi and Balachandar [5]
who, as indicated in table 3.2, found a decrease in the spin rate at these Reynolds
numbers. For comparison with another flow situation, table 3.2 also shows results
for a linear shear flow. For this case the results of Bagchi and Balachandar [6] and
our own agree.

The triangles in figure 3.5 are the normalized spin rates for some of these sim-
ulations, all with Srω = 0.1. In this figure the numerical results are compared with
some of the experimental results (diamonds). The influence of Srω can be deduced
from table 3.2. If Srω << 1, there is little influence of Srω on Ωp/ω as becomes
evident by comparing simulations at different Srω, but at the same Reynolds num-
ber. For example, decreasing Srω by a factor of 1000 at Re = 20 has hardly any
effect on the ratio Ωp/ω. This indicates that the ratio Ωp/ω is much more sensitive
to Re than to Srω for Srω << 1. However, for high values of Srω the particle



48 CHAPTER 3. PARTICLE ROTATION

Figure 3.8: Drag coefficient for a particle in solid-body rotation, Srω = 0.1 (sym-
bols), compared with the standard drag curve CD = (24/Re)(1+0.15Re0.687) for
a uniform flow. The data points for Re = 100 and Re = 200 were calculated with
doubled spatial resolution, but a smaller domain.

Figure 3.9: Normalized torque-free particle spin rate for a particle in solid-body
rotation, Srω = 0.1, as a function of the Reynolds number. The data points for
Re = 100 and Re = 200 were calculated with doubled spatial resolution, but a
smaller domain. The solid line is a fit to the data: Ωp/ω = 1 + 0.0045 Re.
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Flow type Re Ωp/ω, BB Ωp/ω, present results

Linear shear 20 0.35 (Sr = 0.1) 0.36 (Sr = 0.05)
Linear shear 50 0.28 (Sr = 0.1) 0.30 (Sr = 0.05)
Solid-body rotation 20 1.08 (Srω = 1.10−4)

1.07 (Srω = 0.1)
Solid-body rotation 25 0.85 (Srω = 0.04) 1.10 (Srω = 0.04)
Solid-body rotation 50 0.74 (Srω = 0.04) 1.25 (Srω = 0.04)

1.24 (Srω = 0.1)

Table 3.2: Normalized torque-free particle spin rates, results of Bagchi & Bal-
achandar (BB) compared with the present results.

position is near the axis, which has a strong effect on Ωp/ω owing to the resulting
strong inhomogeneity of the flow incident on the particle (see also the end of the
section). The experimental data (diamonds) in figure 3.5 have in general a much
higher shear rate than the numerical simulations, in particular the left-hand data
points.

The triangle corresponding to Re = 5 in figure 3.5 shows an angular velocity
close to the Stokes limit. The spin rate increases with Re, the behavior being
comparable to that seen in the experimental data in the same figure. Figures 3.10
and 3.11 show the velocity field in the symmetry plane in the neighborhood of
the particle for Re = 20 and 50, respectively. At the higher Reynolds number
(figure 3.11) the wake extends to a much greater distance behind the particle but is
less deflected. Also, velocities in the near-wake region are larger in the latter case.

Auton [2] expressed the force FL on a stationary particle immersed in an invis-
cid rotational flow with undisturbed velocity U at the position of the particle center
in the form

FL =
4

3
πR3ρCLU × (∇× U), (3.14)

and calculated the value of the lift coefficient CL as 1/2. As expected, owing to
viscous effects and particle spin, our results, shown in table 3.3, differ from this
value. The table also shows significant differences between our computations and
those of Bagchi and Balachandar [5] for the present case of solid-body rotation,
while the two calculations agree for linear shear.

Not unexpectedly, particle spin is found to have a much greater effect on the
lift than on the drag coefficient. For example, for a non-rotating sphere at Re =
20, CL = 0.45 and CD = 2.79 while, when the particle is allowed to rotate, CD

increases only slightly to 2.80, while CL grows by over 40% to 0.65. These and
other numerical values for Re = 50 and Srω = 0.1 are given in table 3.3 and are
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Figure 3.10: Computed velocity field in the symmetry plane for the flow around a
sphere immersed in a liquid in solid-body rotation (α = 1, β = 1, Srω = 0.1), Re =
20 (left), and a higher-resolution close up (right). The length of the arrows, which
are color-coded, is proportional to the velocity. The flow parameters α and β will
be explained in § 3.6.
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Figure 3.11: As figure 3.10 but for Re = 50.

shown for CL graphically in figure 3.12 by the filled (rotating) and open (non-
rotating) symbols. In both cases the lift coefficient increases with the Reynolds
number. The difference between the rotating and non-rotating cases increases with
Re as well. This is in line with the fact that the particle rotates faster at higher Re.
The lift coefficient must go to zero as Re → 0 and the computed result for Re = 5
does indeed indicate a strong decrease in CL.

For Srω of order 1 the normalized particle spin rate drops below 1. For Srω =
2, for which the axis of rotation touches the particle surface, a normalized parti-
cle spin rate of 0.93 was found on a domain of 10 particle radii in each direction.
This situation is comparable to that in experiments where the particle finds its equi-

creo
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Flow type Re CL, BB CL, present results

Linear shear, R 20 0.18 (Sr = 0.1) 0.19 (Sr = 0.05)
Linear shear, NR 20 0.04 (Sr = 0.1) 0.05 (Sr = 0.05)
Linear shear, R 50 0.11 (Sr = 0.1) 0.13 (Sr = 0.05)
Solid-body rotation, R 20 0.66 (Srω = 10−4)

0.65 (Srω = 0.1)
Solid-body rotation, NR 20 0.45 (Srω = 0.1)
Solid-body rotation, R 25 4.29 (Srω = 0.04) 0.71 (Srω = 0.04)
Solid-body rotation, NR 25 4.14 (Srω = 0.04)
Solid-body rotation, R 50 3.05 (Srω = 0.04) 0.90 (Srω = 0.04)

0.86 (Srω = 0.1)
Solid-body rotation, NR 50 0.64 (Srω = 0.1)

Table 3.3: Comparison of the results for the lift coefficient (defined in (3.14))
of Bagchi & Balachandar (BB) and the present results for rotating (R) and non-
rotating (NR) spheres.

Figure 3.12: Dependence of the calculated lift coefficient defined in (3.14) on the
Reynolds number (Srω = 0.1). The data points for Re = 100 and Re = 200 were
calculated with doubled spatial resolution, but a smaller domain.
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Figure 3.13: Velocity field in the symmetry plane for the flow around a sphere
immersed in a liquid in solid-body rotation for a large vorticity parameter case,
Srω = 2, Re = 20. The axis of rotation is located at (x/R, y/R) = (1,0) and
therefore touches the surface of the sphere.

librium close to the cylinder center. Here a low particle spin rate was found too.
Figure 3.13 shows the flow around the particle for this high value of the vorticity
parameter Srω. The flow near the axis of rotation, located at (x/R, y/R) = (1,0), is
strongly disturbed, with a drastic effect on the incident flow.

3.6 A family of flows

A solid-body rotation can be considered as the result of adding two two-dimensional
shear flows in orthogonal directions (figure 3.14). As we have seen in § 3.2, when
only a streamwise shear is present, the spin rate of the particle is smaller than that
of the fluid, provided inertia is relevant. In contrast, at least in some parameter
range, the opposite is true when both shear components are present, as found in
our experiments and simulations of particles in rotating flows. To better under-
stand the nature of these differences in behavior, we consider the following family
of flows which smoothly interpolates between simple shear and solid-body rotation

U(x, y) = −αωyêx + (βωx − U0)êy. (3.15)

(For a study of the kinematics of these flows see Kobayashi and Coimbra [34].) The
term −U0 (U0 > 0) represents a uniform flow, while α and β set the magnitude of
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Figure 3.14: The three base flows constituting the family of flows described in § 3.6
and studied in § 3.7.

the cross-stream and streamwise shear components, respectively (figure 3.14). The
vorticity and the shear rate s of this flow field are given by

∇× U = ω(β + α)êz, s =
∂Ux

∂y
+

∂Uy

∂x
= ω(β − α), (3.16)

respectively, and both are constants. The vorticity parameter Srω defined in (3.10)
then is

Srω =
ω(β + α)R

U0

. (3.17)

In a straining flow this is not a useful parameter since then β = −α and thus Srω

= 0. Therefore in addition we introduce the ratio

Sr =
sR

U0

=
ω(β − α)R

U0

, (3.18)

which is a dimensionless measure of the shear rate. In the simulations described in
the next section the particle Reynolds number is kept fixed while the parameters α
and β are varied.

To investigate the effect of shear in the cross-stream direction, the streamwise
shear parameter β is set to 1 while the cross-stream shear parameter α is varied
between –1 and 1. When α = 1, the liquid is in solid-body rotation as in figure 3.7a.
For α = 0 the sphere is in a streamwise shearing flow, with the shear in the same
direction as the uniform component, see figure 3.7b. For α = –1 the flow is a
combination of a pure straining and a uniform downward flow, with the particle
displaced horizontally from the center of strain, as in figure 3.7c. Intermediate
values of α interpolate between these situations.
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To see the influence of streamwise shear, when a cross-stream shear component
is also present, the parameter α is set to 1 and the parameter β is varied between
–1 and 1. For β = 1 we have the same solid-body rotation as in figure 3.7a. For
β = 0 we have a uniform flow with a cross-stream shear. The local incident flow
field around the particle is shown in figure 3.7d. For β = –1 once again we find a
combination of a uniform component and a strain, except that now the strain is in
the direction opposite to that shown in figure 3.7c.

3.7 Numerical results for fixed Re, varying α and β

At steady-state, a particle immersed in the flows described in the previous section
will spin with an angular velocity Ωp such that the hydrodynamic couple to which
it is subject vanishes. In the Stokes limit the angular velocity of the particle will be
the same as that of the fluid so that Ωp/ω = 1

2
(β + α).

In figure 3.15 the particle spin rate, normalized by ω, is shown as a function of
the parameter α, with β fixed to 1, or β, with α fixed to 1. If α or β is set to 1,
while the other parameter is varied, in the Stokes limit the result is independent of
which parameter is held fixed and which one is varied, as indicated by the dotted
line in the figure: the angular velocity of the particle increases linearly with both
α and β, and therefore also with the vorticity. When inertial effects are accounted
for, however, it is relevant which of the two shear components is varied. For the
results shown in figure 3.15 the Reynolds number is 20. When the streamwise
shear is fixed (β = 1, squares), the spin rate is below the Stokes value over most of
the range except when the cross-stream component is close to 1. When the cross-
stream component is fixed, however (α = 1, diamonds), the spin rate is always
above the Stokes value. These results clearly show that the angular velocity of the
particle more strongly depends on the cross-stream than on the streamwise shear.

The case α = 0, β = 1 (middle square in figure 3.15) represents a linear shear
flow, the shear component being in the flow direction. We find Ωp/ω = 0.36, the
decrease with respect to the Stokes limit (Ωp/ω = 0.5) being due to inertial effects.
The flow field in the symmetry plane can be seen in figure 3.24b. For the same
Reynolds number, the fit (3.7) to Bagchi & Balachandar’s (2002a) results predicts
a normalized particle angular velocity of Ωp/ω = 0.35, very close to our value (see
table 3.2).

In the pure strain cases (α = 1, β = −1 or α = −1, β = 1) the particle
is found to rotate with Ωp/ω = 0.36 and –0.36, respectively, in spite of the fact
that the undisturbed flow itself has no vorticity. Bagchi and Balachandar [7] con-
sidered the case of a particle moving through a straining field and also found the
particle to rotate as long as neither of the principal axes of the strain was aligned
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Figure 3.15: Particle spin rate normalized by ω vs. α, for β = 1 (squares), and
β, for α = 1 (diamonds) for Re = 20; the dotted line is the Stokes result. The
solid and dashed lines show the result obtained by linearly superposing the values
of Ωp/ω induced separately by each shear flow type.

with the relative velocity. This case is quite similar to our situation of a particle
fixed in a straining flow to which a uniform flow is added, and indeed in our case
no principal axis of the strain is aligned with the uniform flow component. The
streamwise shear induces a clockwise rotation, whereas the cross-stream shear in-
duces a counterclockwise rotation when α = 1, β = –1. The contribution of the
streamwise shear component appears to be less effective, so that the resultant spin
is in the direction of the cross-stream shear. The cross-section of the flow field
around the particle shown in figure 3.24e indicates a deflection of the wake to the
right due to the cross-stream shear. For a cross-stream shear with α = 1, β = 0
(middle diamond in figure 3.15), we find Ωp/ω = 0.72, which is an increase with
respect to the Stokes limit (Ωp/ω = 0.5).

To better understand these different phenomena, the effects of the two shear
types were investigated separately by setting one of the parameters to 0 and varying
the other one. The results are shown in figure 3.16; as before, the dotted line is the
Stokes limit. Once again, the cross-stream shear gives rise to a much higher spin
rate (in modulus) than the streamwise shear. The results of the cross-stream shear
lie above the Stokes limit, those of the streamwise shear below. So, whereas inertial
effects decrease the particle spin rate due to streamwise shear, they increase it in
the presence of a cross-stream shear.

In figure 3.15, the solid line closely matching the squares shows the relation
Ωp/ω = 0.36 + 0.72 α and is the sum of 0.36, the normalized angular velocity
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Figure 3.16: Particle angular velocity normalized by ω vs. α, for β = 0 (squares)
and β, for α = 0 (diamonds) for Re = 20; the dotted line is the Stokes result. The
solid and dashed lines represent linear fits.

calculated for α = 0 and β = 1 (streamwise shear flow) and a linear fit to the value
of Ωp/ω calculated for β = 0 and variable α (i.e. variable cross-stream shear, see
figure 3.16). Similarly, the dashed line represents the relation Ωp/ω = 0.72 +
0.36 β, which is the sum of the angular velocity calculated for α = 1 and β = 0
(cross-stream shear flow), 0.72, and a linear fit to the value of Ωp/ω calculated for
α = 0 and variable β. In table 3.4 the torque-free particle spin rates for different
flow types at different Reynolds numbers are given. Apparently, one can add, resp.
subtract, the particle spin rates in a cross-stream shear and a streamwise shear to
find the spin rates in a solid-body rotation, resp. straining flow. It is remarkable that
a linear combination very accurately reproduces the computational results in spite
of the nonlinearity of the governing equations. Probably this is a consequence of
the relative smallness of the shear flows with respect to the incident uniform flow
in the cases studied (Sr and Srω are of the order 0.1). This finding may be useful
as it permits the deduction of properties of the combined flow from those of its
individual components.

3.8 Shear stress

The results of the previous section show a clear distinction between the effects of
the streamwise shear flow and the other types of flow on particle spin. The stream-
wise shear flow causes a decrease in particle spin rate with increasing Reynolds
number, whereas all others show an increase (table 3.4). The increase is smallest
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Flow type α β ΩP /ω α β ΩP /ω α β ΩP /ω

Re → 0 Re = 20 Re = 50
Linear shear 0 1 0.5 0 1 0.36 0 1 0.30
Cross-stream 1 0 0.5 1 0 0.72 1 0 0.91
Solid-body rotation 1 1 1 1 1 1.07 1 1 1.20
Strain 1 –1 0 1 –1 0.36 –1 1 –0.61

Table 3.4: Results for the normalized particle angular velocity for different types
of flow at Re = 20 and Re = 50 compared with the results for Stokes flow.

for a solid-body rotation, larger for the cross-stream shear and largest for straining
flow.

With the coordinates as given in figure 3.17, the component of the hydrody-
namic couple around the rotation axis is

T = a3

∫

σrφ (sin θ)2 dθ dφ (3.19)

in which a sin θ is the distance of the surface element a2 sin θ dθ dφ from the axis
and σrφ the appropriate component of the viscous stress. The flow around particles
prevented from rotating results in a non-zero value for this integral, while it will
vanish for particles rotating in a torque-free state. It is therefore interesting to con-
trast the detailed distribution of σrφ on the particle surface in these two situations
and for the different flows. (A useful feature of the Physalis method is that the val-
ues of the shear stress are proportional to the coefficients of the spherical harmonic
expansion mentioned in § 3.5.)

A steady two-dimensional boundary layer separates from a fixed wall at a point
of zero shear stress. In our case the boundary layer is three-dimensional and, with
a freely rotating particle, on a moving boundary. Thus the situation is much more
complex (Dandy and Dwyer [17], Degani, Walker, and Smith [18], Délery [19],
Surana, Grunberg, and Haller [59], Van Dommelen and Cowley [63], Williams III
[68]). Still, the separated flow behind the sphere will correspond to a region of low
σrφ. With reference to figure 3.17b, we define angles φ1 and φ2 as limiting angles
of the low-shear-stress region where |σrφ/(µU0/a)| < 0.05 on the sphere equator.
The coordinate system is shown in figure 3.17a; the incident flow is in the negative
y-direction.

Figure 3.18a-c displays σrφ on the sphere for a uniform flow with Re = 50.
Figure 3.18b is a top view of the sphere; figure 3.18a shows contours of σrφ in a
(φ θ)-plot. Another way to present this information is a Hammer–Aitoff projection
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Figure 3.17: (a) Coordinate system for the sphere with incoming flow, (b) top view
of the sphere with the angles φ1 and φ2 marking the region of low shear stress,
|σrφ/(µU0/a)| < 0.05.

(see e.g. Bugayevskiy and Snyder [11]), which has the advantage of preserving
areas. Figure 3.18c shows this Hammer–Aitoff projection for the uniform flow at
Re = 50; the contours in panels a, c, and d are in steps of 0.05. The incoming flow
arrives at the sphere along the line φ = π/2 where σrφ = 0. Behind the sphere (φ
between π and 2π), the flow separates, and here we see a large region of low shear
stress, the green area.

Figure 3.18d shows σrφ for Re = 20. The region of low shear stress (green
area) is smaller, indicating that the flow separates later than for Re = 50. Further-
more the values of σrφ are larger.

We now consider the situation where a solid-body rotation (in the positive z-
direction, α = β = 1 in (3.15)) is added to the uniform flow. Figures 3.19e
and 3.19f, respectively for a non-spinning and a spinning sphere, permit a compar-
ison of the stress distribution in the two cases. It can be seen that the region of low
shear stress (the white region) is shifted somewhat clockwise for the spinning par-
ticle (figure 3.19f) compared to the non-spinning one (figure 3.19e). Both φ1 and
φ2 decrease (compare the location of the contours near the dotted 5π/4 and 7π/4
lines), suggesting that the flow remains attached longer on the side of positive x
(as defined in figure 3.17) and detaches at an earlier stage for negative x. Close
examination of figures 3.19e and 3.19f shows that the front stagnation point moves
a little counterclockwise for a spinning sphere.

In figure 3.18e and 3.18f the uniform-flow distribution is subtracted from the
solid-body rotation at Re = 20. The less positive values of σrφ − σrφ, uniform

close to the dotted 5π/4 and 7π/4 lines suggest that the flow separates at lower
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Figure 3.18: σrφ (a) Uniform flow, Re = 50, (φ θ)-plot, (b) top view or xy-
projection, (c) Hammer–Aitoff projection. (d) Uniform flow, Re = 20, Hammer–
Aitoff projection. (e) Difference between solid-body rotation and uniform flow,
Re = 20, non-rotating, (f) as (e) but, rotating. For the definition of φ and θ, see
figure 3.17.
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Figure 3.18: (continued from the previous page) σrφ (g) Top view of difference
between streamwise shear and uniform flow, Re = 50, rotating. (h) Top view of
difference between cross-stream shear and uniform flow, Re = 20, rotating. For
the definition of φ and θ, see figure 3.17.

φ-values for the spinning particle. Furthermore the front stagnation point shifts
counterclockwise as before owing to the particle spin.

The plots at the left of figure 3.19 display the (rφ)-component of the shear
stress for a non-rotating particle in the four cases of streamwise shear, cross-stream
shear, solid-body rotation and strain. The region of low shear stress is the white
region. The angle φ1 shifts to higher values in the sequence streamwise shear,
solid-body rotation, cross-stream shear, strain. Note that this is the same order
as found for the Reynolds number dependence of the particle spin. There is also
a small shift in φ2. A larger value of φ1 indicates that the shear stress remains
high along a larger fraction of the sphere surface on the positive shear stress side,
which helps the particle spin. A larger φ2, on the other hand, suggests an earlier
separation on the side of the negative shear stress. This means that a shift of φ1 and
φ2 in the direction of rotation favors the particle spin. When the particle is rotating
as shown in the right panels of figure 3.19, the differences between the flow types
become less clear, since the particle spin causes the region of low shear stress to
move back. For example, the particle in a solid-body rotation spins faster than in a
streamwise shear. As a result, the region of low shear shifts clockwise and ends up
at almost the same location as for the streamwise shear.

In figure 3.20 the uniform flow result is subtracted from the other flow types for
Re = 20. In the a-plots we can see that the shear stress distribution remains quite
symmetric for a stream-wise shear, as is also clear from the top view in figure 3.18g.

If we add (σrφ, sws − σrφ, uniform for a stream wise shear, figure 3.20a) and
(σrφ, css−σrφ, uniform for the cross stream shear, figure 3.20b), we obtain the result

creo
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indicated in figure 3.21a, with a striking resemblance with figure 3.20c. Upon
subtracting the two quantities (figure 3.21b) we find a result very close to that of
figure 3.20d for the straining flow. Thus, we can simply add, or subtract, the excess
σrφ with respect to uniform flow for streamwise and cross-stream shear to find
approximately the result for solid body rotating or straining flow. For Re = 50 this
approximation is still good (figures 3.22 and 3.23). We found earlier in § 3.7 the
same additive property for the particle spin rates.

3.9 Physical considerations

In § 3.7 we have seen that a linear addition for the spin rates is possible for Re = 20
and Re = 50. The results in § 3.8 show that the same holds for the change in
the (rφ)-component of the shear stress due to a disturbance of the uniform flow.
Furthermore, when adding a shear component to the uniform flow, a shift of the
low-shear region was seen. What causes the displacement?

For a fixed, non-rotating particle the previous expression (3.19) for the torque
may be written as

T = −µa3

∫

ωθ sin2 θ dθ dφ . (3.20)

When a sphere is held fixed in a steady uniform flow, an axisymmetric stationary
toroidal vortex forms behind it up to a Reynolds number of about 210 (Johnson
and Patel [31], Natarajan and Acrivos [50], Taneda [60]). In a uniform flow the
torque is zero because of the symmetry in ωθ. Consider now a perturbation of
the incident uniform flow in the form of a strain field such as the one shown in
figure 3.7c. This flow, by itself, has no vorticity. Since, as we have seen, the
particle rotates in this situation, a non-zero hydrodynamic couple must exist if the
particle is prevented from rotating. Since the perturbation carries no vorticity, the
hydrodynamic couple must be due to the distortion of the unperturbed vorticity.
The strain alters the symmetry of the ωθ distribution on the particle surface. It
is instructive to consider in this light the different flow situations studied in the
previous sections. The left-hand column in figure 3.24 shows a sketch of the flow
type and the right-hand column is the velocity field in the symmetry plane of the
sphere perpendicular to the axis of rotation. The sketches in the central column
give a qualitative illustration of how the toroidal vortex behind a sphere in steady
uniform flow (shown at the top) may be expected to be modified by the addition of
various disturbances to the base uniform flow.

The central sketch in figure 3.24b shows the modification of the toroidal vortex
due to a streamwise shear flow component. The vortex is tilted by the flow. The
effect of this on the shift of the wake is not clearly visible in the figure. The effect
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: |σrφ|, Re = 20. (a) Streamwise shear (Sr = 0.05, Srω = 0.05),
non-rotating, (b) rotating. (c) Cross-stream shear (Sr = 0.05, Srω = 0.05), non-
rotating, (d) rotating. (e) Solid-body rotation (Sr = 0, Srω = 0.1), non-rotating,
(f) rotating. For the definition of φ and θ, see figure 3.17.
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(g) (h)

Figure 3.19: (continued from the previous page) |σrφ|, Re = 20. (g) Strain
(Sr = 0.1, Srω = 0), non-rotating, (h) rotating. For the definition of φ and θ,
see figure 3.17.

of a cross-stream shear is much larger. As sketched in figure 3.24(c–e), a cross-
stream shear flow tends to displace the toroidal vortex sideways instead of merely
tilting it (which is the result of a streamwise shear). The pictures in the right-hand
column show that, accordingly, the wake is bent much more strongly. When the
cross-stream shear is combined with the streamwise shear to result in a solid-body
rotation (figure case 3.24d), the two effects sketched separately in figures 3.24b and
c act together and result in the spin rate for a particle in solid-body rotation. Since,
with increasing Re, the strength of the toroidal vortex increases, it is reasonable to
conclude that the magnitude of the spin will also increase, as indeed found up to a
maximum Reynolds number in the data shown in figure 3.3. In the pure straining
flow case of figure 3.24e, the streamwise shear opposes the particle spin induced
by the cross-stream shear, but the sideways displacement of the vortex ring is more
powerful and the particle still spins, though with a lower angular velocity.

The results of figures 3.15 and 3.16 show that shear flow in the cross-stream
direction increases the particle spin much more than streamwise shear flow. Harper
and Chang [27] investigated a particle moving through a shear field in an arbitrary
direction. In their case as well one can see from their lift coefficient that the cross-
stream shear has a stronger effect than a streamwise one. This seems to be a general
feature of the type of flows investigated in the present parameter range.

Apart from displacing the wake, the shift of the vortices will change the lo-
cation of the region of low shear, so instead of looking at the wake displacement,
we may also look at the angles φ1 and φ2 discussed in § 3.8 to obtain an idea of
this shift. Here one should remember that there are two competing effects for a
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(a) (b)

(c) (d)

Figure 3.20: Differences in σrφ with uniform flow, Re = 20, rotating particle: (a)
streamwise shear shear, (b) cross-stream shear, (c) solid-body rotation, (d) strain.
For the definition of φ and θ, see figure 3.17.

(a) (b)

Figure 3.21: Differences in σrφ of a streamwise and a cross-stream shear: (a)
added, (b) subtracted. Re = 20. For the definition of φ and θ, see figure 3.17.
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(a) (b)

(c) (d)

Figure 3.22: Differences in σrφ with uniform flow, Re = 50, rotating particle: (a)
streamwise shear shear, (b) cross-stream shear, (c) solid-body rotation, (d) strain.
For the definition of φ and θ, see figure 3.17.

(a) (b)

Figure 3.23: Differences in σrφ of a streamwise and a cross-stream shear: (a)
added, (b) subtracted. Re = 50. For the definition of φ and θ, see figure 3.17.
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rotating sphere: the shear components shift the angles φ1 and φ2 counterclockwise
(compare figure 3.19a, c, e, and g with 3.18d), while the particle spin shifts them
in clockwise direction (compare figure 3.19a, c, e, and g with b, d, f, and h). From
studying the non-rotating cases, we know that the shears increase the angles φ1

and φ2 (though the increase in the latter is minor compared to the increase in the
former). This implies a shift of the left stagnation point downward and the right
stagnation point slightly upwards in figure 3.24. For the rotating cases the angles
are shifted back a little, but in general φ1 is increased. This suggests that the flow
remains attached along a larger region on the left-hand side of the sphere than on
the right-hand side of the sphere.

So by what mechanism is the particle spin rate decreased for a linear shear and
increased for the other flow types? Consider a particle in a uniform flow with its
distribution of surface shear, figure 3.18d. The torque on the particle is zero. Addi-
tion of a linear shear, always keeping the particle from rotating, causes a change in
this distribution of surface stress, figure 3.19a, but the shift of the low-shear-stress
region is not large. There is now a torque on the particle which must be externally
opposed in order to prevent particle spin. If we take this torque away, only a rel-
atively small spinning rate is sufficient to relax the torque on the particle to zero.
When cross-stream shear, strain or solid-body rotation are added to the uniform
velocity, there is a much larger displacement of the low-shear-stress regions, see
the large shift in φ1 in figure 3.19 c, e and g. The reason for this larger shift in
φ1 lies in the sideways displacement of the toroidal vortex, due to the cross stream
shear component. A larger spinning rate of the sphere is now needed to relax the
torque on the particle to zero.

As the Reynolds number rises, the strength of the vortices will increase. How-
ever, owing to stronger convective effects the wake is less deflected. The two
competing effects on the wake (increased vortex strength and diminished wake de-
flection) are reflected in the shear stress values. As the Reynolds number increases,
the absolute value of the shear stress decreases (compare figures 3.18c and 3.18d).
The differences with uniform flow remain, however, comparable for Re = 20 and
Re = 50 (figures 3.20 and 3.22). Relatively, the difference with uniform flow is
larger for higher Reynolds number. So even though the shear stress decreases for
higher Reynolds number, the effective difference with uniform flow increases and
the flow effects on the spin rate will increase with the Reynolds number.

What happens in the highest Reynolds number range investigated in the present
experiments with water? Uniform flow past a sphere has been studied extensively
and exhibits a complex behavior. The linear stability analysis of Natarajan and
Acrivos [50] reveals a first regular bifurcation to a steady non-axisymmetric flow
at Re ≃ 210, followed by a Hopf bifurcation at Re ≃ 270. These results have been
confirmed by Ghidersa and Dusek [24] and Thompson, Leweke, and Provansal
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[61]. The computations of Johnson and Patel [31] accounting for a finite deviation
from axisymmetric flow confirm the steadiness of a non-axisymmetric regime be-
low Re ≃ 270, where they find a transition to organized periodic vortex shedding,
a result also found by Tomboulides and Orszag [62]. It is interesting to note that
the results of Johnson and Patel [31] clearly show the presence of a strong toroidal
vortex structure behind the sphere even beyond transition to the unsteady regime
after the second bifurcation. Computations by Lee [37] and Lee and Wilczak [38]
also suggest that a non-axially-symmetric vortex structure persists up to a Re in the
range 350 to 400, while the flow becomes unsteady for Re > 400. On the basis of
experimental evidence, Taneda [60] states that a similar structure, possibly oscil-
lating, persists until Re ≃ 400. He reports a major transition for Re between 400
and 1000 where the more-or-less persistent vortex structure behind the sphere is re-
placed by unsteady horseshoe-shaped vortex loops. According to Tomboulides and
Orszag [62], a chaotic regime sets in for Re ≃ 500. The details of some of these
conclusions must be modified in the case of free spheres (Jenny et al. [29, 30]), but
the general picture of a first regular bifurcation, followed by a Hopf one, a markedly
unsteady and eventually a chaotic regime remains essentially unchanged.

There does not appear to be any information on how these features are mod-
ified in a rotating flow, but for a linear shear flow the results of Lee and Wilczak
[38] show that the same features exist, although the onset threshold is lowered. It
may be reasonable to expect that, in our case, the features of a uniform flow quali-
tatively survive, with different onset thresholds. Therefore, the difference between
the steady position of the particle center observed in the glycerine–water mixture
and the small precessing motion found in pure water (see § 3.3) may be caused by
what in a uniform flow would be the loss of axial symmetry and onset of unsteadi-
ness. Similarly, the steep fall of the rotational velocity when the Reynolds number
exceeds a value of ∼650 (to the left of the sharp peak in figure 3.3) might be due
to the collapse and disappearance of the vortex structure which, as argued before,
may very well be the ‘engine’ on which the fast spin relies.
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Figure 3.24: Illustration of the proposed mechanism underlying the effects de-
scribed in this work. The left-hand column shows the components of the flow in
which the sphere is immersed. The middle column is a sketch of the displacement
of the toroidal vortex and the low shear stress region behind the sphere due to the
shear components of the flow. The right-hand column shows the calculated ve-
locity field in the symmetry plane of the sphere in the corresponding flow, all for
Re = 20. (a) Uniform flow, α = 0, β = 0; (b) linear shear flow, α = 0, β = 1; (c)
cross-stream shear flow, α = 1, β = 0; (d) solid-body rotation, α = 1, β = 1; (e) pure
strain, α = 1, β = -1.
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3.10 Summary

Whereas inertial effects cause a particle to spin more slowly than the fluid in a
streamwise shear, we have found that, in the presence of a significant cross-stream
shear component of the flow, the particle spins faster than the fluid due to a strong
deflection of the wake. Unexpectedly, in the parameter range we have investigated,
we found that the spin rates produced by the streamwise and cross-stream shear
can be added to give a very close approximation to the spin rate calculated when
both shear components are present simultaneously.

Combining the two types of shear into a solid-body rotation gives a result in
which the spin rate is larger than that of the ambient fluid. The fact that, in a
solid-body rotation, the particle spins faster than the fluid has been confirmed by
experiment and simulation. The difference between the influence of the two shear
types yields the particle spin rate in a strain flow combined with a uniform flow.

A study of the shear stress on the particle surface suggests the location of the
separation lines. In view of the complexity of three-dimensional separation on a
moving wall, we have not attempted to determine precisely the position on these
lines. We have simply identified the region of low shear stress behind the particle.
When a cross-stream shear is present this region moves counterclockwise with
respect to the uniform flow. For a rotating particle, the low-shear region to some
extent moves back clockwise.

A tentative explanation for the phenomenon is based on the different modifica-
tions of the vortex structure behind the sphere caused by the different flows. The
cross-stream shear causes a sideways displacement of the vortex structure and a
shift in the low-shear region. Since the strength of this vortex increases with Re,
so does the effect. This trend abruptly breaks down at Re ∼ 650, where the par-
ticle spin rate starts to decrease until ultimately falling below that of the fluid. We
have suggested that this qualitative change may be due to the destabilization and
disappearance of the vortex structure behind the sphere.

The particle spin has a clear effect on the lift coefficient in the intermediate-
Reynolds-range. We have computed that, in a solid-body rotation at Re = 20 and
50, the lift coefficient is 47% and 34%, respectively, larger for a rotating than for a
non-rotating sphere.
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Chapter 4

Particles in a rotating flow‡

In chapter 2 we studied a bubble in solid body rotation. In chapter 3 we considered
the spin rate of a particle and its effect on the lift force, mainly numerically. We
observed that in solid body rotation the sphere spin rate increases with the particle
Reynolds number and affects the lift coefficient. In this chapter a freely rotating
sphere in a solid body rotating flow is investigated experimentally. When the den-
sity of the sphere is smaller than that of the surrounding fluid, the sphere reaches
an equilibrium position in the experimental setup. From this position, drag and
lift coefficients are determined over a large range of particle Reynolds numbers
(2 ≤ Re ≤ 1060). The sphere spin rate is recorded. The wake behind the sphere is
visualized and appears to deflect strongly when the sphere is close to the cylinder
center. In fluids with low viscosity, high sphere spin rates are observed. By com-
paring numerical results for a fixed, but freely spinning with a fixed non-spinning
sphere, the effect of the sphere spin on the lift coefficient is determined. The combi-
nation of these results allows for a parametrization of the lift and drag coefficients
of a freely rotating sphere as function of the Reynolds number, the particle spin and
the location of the particle with respect to the cylinder center.

————————————————————————————————

4.1 Introduction

The motion of particles in flows is of interest for many chemical, mechanical
and environmental engineering applications. Solid particles are often modelled
as spheres. Their motion is dictated by drag and lift forces for most flow types.

‡To be published as J.J. Bluemink, D. Lohse, A. Prosperetti, and L. van Wijngaarden, Drag and
lift forces on particles in a rotating flow.
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Moreover, understanding sphere behavior can help to understand the behavior of
bubbles with surfactants, since they tend to behave more like spheres due to the
fact that the zero-shear stress boundary condition on the bubble surface does not
apply and a no-slip boundary condition becomes more appropriate as a result of the
surfactants. Therefore, in this chapter we discuss the same system as in chapter 2
[24], but instead of considering a bubble, we consider a particle. To the best of our
knowledge there are no results available for a sphere in this system in the interme-
diate Reynolds number range. For a review of the literature in the low-Reynolds
number range see § 3.1.

Because of the differences between particles and bubbles as discussed in § 1.2.2,
we expect to find different parameterizations for the lift and drag coefficients.
Moreover, the equilibrium positions will be less stable since the particle density
is quite close to the fluid density for the particles studied. We also expect a qual-
itative difference in the particle trajectories since a freely rising light sphere dis-
plays path instability and will not follow a rectilinear path for a sufficiently high
Reynolds number [5, 6, 8, 25]. Bubbles behave in the same way as already noted by
Leonardo da Vinci [20]. However the onset is for much larger Reynolds numbers
if the bubble is spherical. By analyzing the vorticity field behind a bubble Mougin
and Magnaudet [18] showed that the path instability of a bubble is a result of insta-
bilities in the wake. We may expect that the same holds for a particle. In a uniform
flow the wake behind a particle is steady and axisymmetric up to Re ≈ 212. From
212 < Re < 274 the wake is still steady, but non-axisymmetric, though there is
planar symmetry. For Re > 274 the wake becomes unsteady and somewhere be-
tween Re = 350 and 420 the planar symmetry of the wake is lost. From Re = 800
the wake displays small scales due to a Kelvin-Helmholtz instability of the separat-
ing shear layer [23]. For a more elaborate review of the literature on this topic see
§ 3.9. For freely moving drops the wake was studied experimentally by Magarvey
and Bishop [14, 15]. Instabilities in the wake for spheres fixed in a uniform flow
have been investigated in detail numerically [for example 7, 11] and experimen-
tally. In the experimental system we study a free sphere which remains in place
mainly due to a balance between buoyancy and drag. It therefore mimics a free rise
in a fluid with rotation. The behavior of freely rising and falling spheres described
by Jenny et al. [5, 6] is of interest for this situation. In the numerical simulations
discussed in this chapter the particle is fixed and therefore not freely rising. Since
the numerical simulations are in the regime Re ≤ 200 and thus below the critical
Reynolds number where the particle trajectory of a freely rising sphere deviates
from a straight vertical line, we expect no difference between the experimental and
numerical results in this regime. When reaching Reynolds numbers above 200 we
may expect the dynamics of the particle to change drastically as a result of path
instability.
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4.2 Direct numerical simulations

4.2.1 Control and response parameters

To simulate a solid body rotation we fix a particle in a domain in which the undis-
turbed flow is given by (3.15) with the prefactors α and β set equal to 1. The rele-
vant dimensionless numbers in the numerical simulations are the particle Reynolds
number Re as defined in (3.1) and the vorticity parameter Srω as defined in (3.10).
The vorticity parameter indicates the position of the particle with respect to the
axis of rotation. In a linear shear flow the vorticity parameter has the same value
as the dimensionless shear rate Sr, defined in (3.18).

As response parameters we will consider the lift and drag coefficients and the
particle spin rate. The particle is allowed to spin freely and adopts its torque-
free spin rate as discussed in chapter 3 [3]. The drag coefficient CD and the lift
coefficient CL are obtained by balancing the forces in (1.1) for the x– and y–
directions defined by (3.15)

Fy = (ρp − ρ)V g +
1

2
CDρπR2U2, (4.1)

Fx = ρV CLU × (∇× U) + ρV (CA + 1)U · ∇U, (4.2)

where ρp and ρ are the sphere and fluid densities, V and R the sphere volume and
radius, CA the added mass coefficient (CA = 1/2 for a sphere), g is the acceleration
due to gravity and U the undisturbed fluid velocity. The history force vanishes,
since the sphere is fixed and the drag and lift coefficients are calculated after a
steady state has been reached.

4.2.2 Previous work

Most DNS results for lift and drag have been obtained for particles in a linear shear
flow. Dandy and Dwyer [4] simulated a fixed non-rotating sphere in a linear shear
flow at different shear rates and found that the lift coefficient is insensitive to Re
for 40 ≤ Re ≤ 100. As indicated in chapter 3 the particle spin rate influences the
lift force, so it is of interest to study a spinning sphere. Lin, Peery, and Schowalter
[13] calculated for a simple shear that the torque-free spin rate of a sphere decreases
with increasing inertial effects (see also (3.4)). Rubinov and Keller [21] calculated
lift and drag of a spinning sphere in a uniform flow at small Reynolds number,
accurate in terms of O(Re). They found for the lift, to this order, ρπR3Ω × U ,
which gives, with our definition of CL (see 3.14) or (4.2)), for the spin-induced lift
CL,Mg (a Magnus-like lift)

CL,Mg =
3

8

ΩP

ω
. (4.3)
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Kurose and Komori [9] simulated a rotating sphere in a linear shear flow and
considered the effects of fluid shear and particle spin rate for 1 ≤ Re ≤ 500.
They found a change in the sign of the lift coefficient for non-rotating spheres at
Re = 60, with the lift force acting from the low-fluid-velocity side to the high
fluid-velocity-side below Re = 60. Furthermore they found that the lift and drag
coefficients are affected by the fluid shear and particle spin. At high Reynolds
numbers they could not separate the lift force into a part due to shear and a part
due to sphere spin, in their view since the flow separation is strongly affected by
both shear and rotation. It should be noted that their sphere spin rate was imposed.
Bagchi and Balachandar [2] allow the sphere to rotate freely (in such a way that
it reaches a torque-free spin rate) and in contrast found that they could decouple
the Magnus-like lift (due to particle spin) and the shear-induced lift in the range
0.5 ≤ Re ≤ 200, i.e.,

CL(Re, Sr, ΩP ) = CL(Re, Sr = 0, ΩP ) + CL(Re, Sr, ΩP = 0). (4.4)

Here CL(Re, Sr, ΩP ) is the lift coefficient of a freely spinning sphere in a shear
flow with dimensionless shear rate Sr, CL(Re, Sr = 0, ΩP ) the lift coefficient of
a sphere in a uniform flow with imposed spin rate ΩP (the torque-free spin rate that
the sphere would attain in a shear flow with Sr) and CL(Re, Sr, ΩP = 0) the lift
coefficient of a non-spinning sphere in a shear flow with Sr. They approximated
the Magnus-like lift due to the shear-induced spin by

CL(Re, Sr = 0, ΩP ) ≈ 0.55
3

8

ΩP

ω
. (4.5)

As indicated by Bagchi and Balachandar [2] this decoupling is possible when
the particle spins freely. The lift effects behave linearly in this case up to a much
higher Reynolds number. They expect the decoupling to be valid over a Reynolds
range much wider than they considered.

Bagchi and Balachandar [1] also simulated a sphere rotating freely in a solid
body rotating fluid. However, as shown in chapter 3, their results for particle rota-
tion and their lift coefficients are different from the results we find.

4.2.3 Results: DNS results for solid body rotation

Numerical results for light particles in solid body rotation were obtained with the
DNS method Physalis [26], a combination of a finite difference and a spectral
method [see 26]. For details on resolution and domain size, see § 3.4. Both non-
rotating spheres and freely rotating spheres were simulated.

Figure 4.1 shows the drag and lift coefficients as function of the Reynolds num-
ber, with the vorticity parameter Srω = 0.1. The numerical data for the drag coeffi-
cient (figure 4.1a) show good agreement with the standard drag curve, even though



4.2. DIRECT NUMERICAL SIMULATIONS 81

the flow is not uniform. For Re = 100 and 200 the data deviate slightly, possibly
because the simulations are somewhat under-resolved for these Reynolds numbers.

The lift coefficient is much more sensitive to numerical details than the drag
coefficient. Since there are not many data points with which we can compare our
results for a sphere in this rotating system, a finite volume code, called ”Jadim” [12,
17], was used to validate the Physalis results by simulating non-rotating spheres.
For details on the method, see [12, 17]. 100 × 56 × 34 nodes were used. Both
methods yield comparable results for the lift coefficient of a non-rotating sphere
(open symbols in figure 4.1b), indicating that the Physalis results for non-rotating
spheres are reliable. The Physalis data for a non-rotating sphere were fitted by:

CL,nrs = 0.51 log10 Re − 0.22 for 5 ≤ Re ≤ 200, (4.6)

with CL,nrs the lift coefficient for a non-rotating sphere.
For freely rotating spheres the lift coefficient is higher because a Magnus-like

contribution is added due to the sphere spin. The normalized spin rate as a function
of Re is fitted as in figure 3.9

ΩP

ω
= 1 + 0.0045 Re for Re ≤ 200. (4.7)

Adding the Magnus-like lift to the lift coefficient for non-rotating spheres should
result in the lift coefficient for spinning spheres, if the effects behave linearly as
indicated in (4.4). In a similar fashion as (4.5) the data in figure 4.1b show that a
good fit for the spinning spheres is obtained if a contribution for the Magnus-like
lift of

CL(Re, Srω = 0, ΩP ) ≈ 0.5
3

8

ΩP

ω
≈ 3

16

ΩP

ω
for Re ≤ 200 (4.8)

is added. The lift coefficient then depends on Re as

CL = CL,nr +
3

16

ΩP

ω
= 0.51 log10 Re − 0.22 +

3

16
(1 + 0.0045Re). (4.9)

The thick solid line in figure 4.1b represents (4.9). The thinner line above is the
same fit with (4.5) instead of (4.8) to model the contribution of the Magnus-like lift.
The numerical data for a freely rotating sphere in figure 4.1b show good agreement
with (4.9). We can therefore conclude that in the range 5 ≤ Re ≤ 200 and for
sufficiently low Srω the effects of the Magnus-like lift and the lift induced by the
flow can be decoupled in the same fashion as (4.4) for this rotating system. We also
find that the factor with which the Magnus-like lift should be multiplied before it is
added to the flow-induced lift is very close to that found by Bagchi and Balachandar
[2] for the linear shear flow.
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Figure 4.1: Numerical results for CD and CL obtained with two different numer-
ical codes. Srω = 0.1 for all cases. The abbreviations ’frs’, ’nrs’ and ’csb’ stand
for freely rotating sphere, non-rotating sphere and clean spherical bubble. (a) Drag
coefficient versus Reynolds number. (b) Lift coefficient versus Reynolds number.
The dotted line is the fit (4.6) through the Physalis data of a non-rotating sphere.
The solid line is the combination (4.9) of the previous fit (4.6) and the contri-
bution due to the Magnus-like lift (4.8). The thinner line just above is a similar
combination of fits with the prefactor (4.5) of Bagchi and Balachandar [2] for the
Magnus-like lift. The fit for a clean spherical bubble is taken from [16].

The dash-dotted line in figure 4.1b represents a fit of the data of Magnaudet and
Legendre [16] for a clean spherical bubble in solid body rotation. It is clear that
these curves show a completely different trend. Since the bubble cannot deform
this difference is solely due to the difference in boundary conditions at the surface.

4.3 Experiments

4.3.1 Control parameters

The governing parameters of the experimental system (the same as in chapter 2,
but now for a particle instead of a bubble) are the gravitational acceleration g, the
liquid viscosity ν, the liquid density ρ, the particle density ρp, the particle radius
R and the cylinder angular velocity ω. Three dimensionless groups can be formed
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from these parameters

Ta =
2R2ω

ν
, Ga =

2R
√

2R(1 − ρp/ρ)g

ν
,

ρp

ρ
, (4.10)

in which Ta is the Taylor number, Ga the Galileo number and ρp/ρ the density
ratio. Note that the Galileo number and the density ratio are the dimensionless con-
trol parameters in the system of a freely falling and rising sphere studied by Jenny
et al. [5, 6]. Their observations may thus be relevant for our system.

The outputs of the experimental system are the equilibrium position of the
sphere (re, φe) and its spin rate ΩP . The equilibrium position allows us to deter-
mine the lift and drag coefficient. The spin rate is measured since it has a significant
influence on the lift coefficient as was shown in chapter 3 and in § 4.2.3.

The relationship between the equilibrium position of the sphere and the lift and
drag coefficient is obtained by solving the equation of motion (2.1) for particles.
We find in close correspondence to (2.14) and (2.15)

tan φe =
8

3

R

CDre
(2CL − 1 − CA), (4.11)

re = − g(ρ − ρp) sin φe

ρω2(2CL − 1 − CA)
. (4.12)

The difference between (2.14), (2.15) and (4.11), (4.12) is that for a solid sphere
the densities of the fluid and the sphere play an important role, since the sphere
density ρp is non-zero.

Equations (4.11) and (4.12) can be solved to see the effect of the control param-
eters on the equilibrium radius re of the particle. If the drag coefficient is estimated
by CD = 24/Re, re can be expressed as:

re =
R2(ρ − ρp)g

ρω
√

81/4ν2 + R4ω2(2CL − 1 − CA)2
. (4.13)

For very viscous fluids, ν >> R2ω, we find that the distance of the particle from
the cylinder center depends on the cylinder rotation rate as

re

R
∼ (1 − ρp/ρ)gR

9/2ν

1

ω
, (4.14)

whereas for fluids with a low viscosity

re

R
∼ (1 − ρp/ρ)g

R(2CL − 1 − CA)

1

ω2
. (4.15)
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The dependence of the drag coefficient CD and the lift coefficient CL on re and φe

is (rewriting (4.11) and (4.12))

CL =
1

2

[

1 + CA − ρ − ρp

ρ

g sin φe

reω2

]

. (4.16)

CD = −8

3

ρ − ρp

ρ

Rb

r2
ew

2
g cos φe. (4.17)

The undisturbed velocity at the particle center is

U0 = ωre. (4.18)

As a result the equilibrium radius re enters the Reynolds number and the Froude
number

Re =
2RU0

ν
=

2Rreω

ν
, Fr =

U2
0

2Rg
=

r2
eω

2

2Rg
(4.19)

and a vorticity parameter

Srω =
2ωR

U0

=
2R

re
. (4.20)

4.3.2 Experimental setup

In an experiment a sphere is inserted in a horizontal cylinder filled with a liquid.
The cylinder has a radius is 250 mm and a length of 500 mm. Its wall and end
caps are made of 15 mm thick Plexiglas. Two steels rods support the cylinder, a
third rod is mounted above it. The rods have a rubber coating such that there is
no slip between the rods and the Plexiglass wall when rotating. One of the rods
is connected to an AC servo motor by a belt and drives the rotation. The cylinder
rotates anti-clockwise with frequencies between 0 and 2 Hz, the rotation rate can be
set precisely. The cylinder can be pivoted to an almost upright position for filling
purposes. For the definition of the coordinates see also figure 3.1a. The cylinder is
set into rotation and some time is allowed to reach a steady-state.

The sphere position is determined by making a shadow on a screen (an opal
diffusing glass plate of 200 mm by 250 mm). For this purpose a narrow laser beam
is widened into a parallel beam with a diameter of about 8 cm. The beam passes
through the cylinder, creating a bright spot on the screen located at the other side
of the cylinder (figure 4.2). A grid with 1 cm spacing is attached to the screen.
The shadow of the particle on the grid is recorded with a camera with a frame rate
of 50 frames per second. The camera is connected to a computer. The position of
the particle’s shadow with respect to the grid is determined by image analysis. The
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Figure 4.2: Top view of the optical parts of the experimental setup. L1 is a lens
with f = 10 mm, L2 with f = 1000 mm.

cylinder center is determined by recording marks on the end caps of the cylinder for
the duration of a full rotation. The marks trace a circle during the full rotation and
the centers of the circles are determined by image analysis to obtain the centers of
the end caps with respect to the grid. Measuring the location of the sphere along the
cylinder axis and linear interpolation between the centers of the end caps provides
the position of the cylinder center at the axial plane of the sphere, thus correcting
for misalignment between the laser and cylinder axis.

To cover a wide range of Reynolds numbers, nine mixtures of glycerin and
water with different viscosities were prepared. Table 4.1 shows the different liq-
uids, together with the mass percentage of glycerin. It also shows the kinematic
viscosity, the fluid density and the Reynolds range covered by each liquid. For the
viscosity measurement several U-tube and Ubbelohde viscometers were used. For
the density measurement a pycnometer was used. For some liquids two different
viscosities are indicated in table 4.1. This is a result of measuring at different tem-
peratures. The temperature was monitored and recorded during the experiment and
the viscosity of the fluid was determined at the same temperature.

To obtain a minimum excursion around the equilibrium position, a sphere with
a density much lower than water is the best choice. However, such spheres are
generally hollow and have an unequal mass distribution or they are manufactured
in such a way that the sphericity is not assured. To have good sphericity and
mass distribution, low-density polyethylene (LDPE) spheres with a density ratio
of ρp/ρwater≈ 0.93 were used. For the viscous fluids ρp/ρ is smaller than for wa-
ter (since these fluids have a higher density). As a result the equilibrium position is
more stable for the lower numbered liquids in table 4.1. The sphere radius is 3.969
mm. To determine the spin rate, the sphere is marked and its spin is recorded by
a video camera. For the experiments in water (liquid 9 in table 4.1) the behavior
of a second sphere with a radius of 3.175 mm was studied. However the spin rates
were not measured. Measurements for this sphere are indicated by open triangles
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Liquid % glycerin ν ρl Re-range Symbol
# (by weight) mm2 s−1 g cm−3 in figures

1 89 170.1 1.232 1.8 - 1.9 �

2 85 91.1, 86.0 1.222 5.2 - 5.5 N and △

3 80 55.2 1.211 11.0 - 11.5 �

4 75 28.1 1.194 24.7 - 29.9 ♦

5 68 15.4 1.174 59.9 - 68.0 ◮

6 60 9.3 1.154 107 - 127 �

7 48 4.5, 4.8 1.121 234 - 297 H and ▽

8 30 2.3 1.071 450 - 574 ⋆

9 0 0.98 0.997 687 - 1060 ◭ and ⊳

Table 4.1: Properties of the experimental liquids.

pointing to the left (⊳).
The experimental procedure consists of filling the tank with one of the fluids of

table 4.1 and inserting the sphere. Bubbles initially remaining in the cylinder are
removed by tilting the tank somewhat and rotating it slowly. The bubbles drift to
the front side of the cylinder where they can be removed at an air-inlet by adding
fluid. When the tank is completely filled with fluid, the cylinder is tilted back to
its horizontal position and set into rotation. Waiting times of 10 minutes up to 1
hour (for the highly viscous fluids) may be needed for spin up of the fluid (see also
§ 3.3) and to allow a particle to reach its equilibrium position and torque-free spin
rate.

An analysis of the systematic error by means of error propagation of the errors
in re, φe, ρb, R, ρl, ν and ω, shows that for the liquids with high viscosity the
measurement uncertainty of the lift coefficient is very high. The error in the mea-
surement of the position is estimated to be one millimeter in the x-direction and
half a millimeter in the y-direction for the experiments where the particle displays
only tiny excursions from its equilibrium position. For the measurements where the
sphere moves around its equilibrium position, the error in position was estimated
to be a few millimeters in both directions. An error in the angle ∆φe propagates
strongly in the error of the lift coefficient. The error in the drag coefficient depends
more strongly on the relative error in the radial distance from the cylinder center
∆re/re. In table 4.2 an indication of the measurement uncertainty for each liquid
is shown. The values are a good representation for the measurement uncertainty of
most data points. However, those data points for which the radius of the trajectory
executed by the sphere is large and for which simultaneously the particle equilib-
rium position is located close to the cylinder center, may have larger uncertainties.
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Liquid # Re Srω CD CL

1 4% 2% 5% >100%
2 3% 1% 4% 50%
3 4% 1% 4% 20%
4 4% 2% 5% 10%
5 4% 1% 3% 10%
6 10% 1% 3% 10%
7 4% 1% 4% 10%
8 4% 2% 4% 10%
9 3% 2% 4% 10%

Table 4.2: Order of magnitude of the uncertainties for the different liquids.

4.3.3 Results: Particle trajectories

Figures 4.3, 4.4, 4.5 and 4.6 show particles trajectories in liquids 4, 7, 8 and 9. For
the definition of the xy-plane, see figure 3.1a. In the figures the cylinder rotation
frequency fc and the Reynolds number Re are indicated for each trajectory. Fig-
ure 4.3 is a typical representation of the behavior of the sphere in liquids 1–6. In
these liquids the sphere remains more or less steady in its equilibrium position. In
some cases it makes a larger excursion around its equilibrium. However, the tra-
jectory it traces is very regular and this suggests that the sphere has not yet settled
into its equilibrium position. A longer waiting time should have been allowed for
these cases.

Figure 4.4 represents the trajectories in liquid 7 and shows the transition of the
sphere resting in its equilibrium position (for the higher cylinder frequencies) to a
somewhat erratic path around it (for the lower cylinder frequencies). For Re ≤ 274
the trajectories are regular and most of the time the radius of the trajectory is much
smaller than the particle radius. For Re ≥ 283 the trajectories become irregular and
their radii are larger. Allowing a longer waiting time has no effect on the trajectory,
the path remains erratic. The qualitative change in trajectories occurs between Re
= 274 and Re = 283. Since this is close to the critical Reynolds number (where a
particle in a quiescent fluid stops rising in a rectilinear motion and starts displaying
spiralling or zigzagging motion), the change in trajectories is most likely connected
to path instability (see § 4.1).

For liquids 8 and 9 (Re ≥ 450) (figures 4.5 and 4.6) Re is everywhere above
the critical Reynolds number. Indeed, we observe that the particle is no longer fixed
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Figure 4.3: Particle trajectories for a sphere in liquid 4 (table 4.1) in the xy-plane.
The cross at (0,0) is the cylinder center. The position is normalized by the radius of
the sphere. For each trajectory the cylinder rotation frequency fc and the Reynolds
number Re are indicated.

Figure 4.4: As figure 4.3 but for liquid 7.

Figure 4.5: As figure 4.3 but for liquid 8.
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Figure 4.6: As figure 4.3 but for liquid 9.

at an equilibrium position, but moves in an erratic way around it. The motion in the
z– (axial) direction is minor compared to that in the xy–plane. In a quiescent fluid
the deviation from the rectilinear rising motion due to path instability is oriented
in the plane perpendicular to the gravitational acceleration (here the y-direction).
For the present rotating system, the sphere motion is not mainly oriented in the
plane perpendicular to the gravitational acceleration nor in the plane perpendicular
to the centripetal acceleration. It is principally in the xy–plane shown in figures 4.5
and 4.6, i.e. the plane spanned by the gravitational and the centripetal acceleration.

When the sphere is close to the cylinder center (i.e. the vorticity parameter
is high) its trajectory is no longer erratic but forms a regular reproducible circle.
When the particle is traced for several periods, the path it follow overlays itself.
The circle travelled by the particle has a very large radius. We define the effective
equilibrium position as the center of the trajectory. This center is determined by
taking the average over a complete cylinder rotation (the time needed for a full
cylinder rotation equals the time needed for the sphere making a full circle around
its effective equilibrium position, i.e. the cylinder rotation frequency and the sphere
excursion frequency are the same for the regular trajectories). The averaging over
the sphere trajectory is appropriate for the small trajectories or the trajectories that
are located sufficiently far from the cylinder center. However, for the large circular
trajectories close to the cylinder center it is unclear what flow field is seen by the
particle. As a result the data with a high vorticity parameter are less reliable.

4.3.4 Results: PIV images of the wake of the sphere

The particle behavior discussed in § 4.3.3 may be a result of the wake structures
behind the sphere. Since the sphere is held in its equilibrium position merely by
a balance of forces, the situation is similar to a freely rising sphere. We expect to
encounter the analogs of path and wake instability as discussed in § 4.1. However,
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due to the rotation, the instabilities may be different from a freely rising sphere in
a quiescent fluid. It is therefore of interest to study the wake behind the sphere in
the solid body rotating flow.

Sakamoto and Haniu [22] studied the wake of a fixed particle in a linear shear
flow. They found that at the appearance of vortex shedding vortex loops are de-
tached always on the high fluid velocity side. In contrast to a uniform flow without
shear, where the detachment point of the vortex loop alternates. They attribute
this one-sided detachment of the vortex loops to the faster growth of the vortex on
the high-fluid-velocity side compared to that on the low-fluid-velocity side. As a
result the vortex on the high-fluid-velocity side continues to grow while taking in
the vorticity of the surrounding shear layer. Furthermore they noted that the vor-
tex shedding frequency increases with the shear when Sr > 0.05. The Reynolds
number above which vortex shedding occurs is lowered by shear.

The flow around a sphere in solid body rotation is not symmetric and contains
higher fluid velocity on one side of the sphere as in linear shear flow. We may there-
fore expect also in solid body rotation changes regarding the onset of instability as
well as changes in vortex shedding frequency.

To visualize the flow around the particle, the fluid (water) was seeded with hol-
low glass spheres with a diameter of 15 µm. The wake of a sphere in the xy-plane
was visualized by standard PIV measurements at cylinder rotation frequencies of
0.2 Hz, 0.5 Hz and 1.0 Hz. The resulting flow fields (indicated by arrows) and vor-
ticity fields (indicated by colors) can be seen in figures 4.7, 4.8 and 4.9. Vortices
appear to be shed on both sides, but the shedding on the high-fluid-velocity side
is more pronounced. From the PIV results we cannot conclude with certainty that
vortex shedding occurs solely in the xy–plane. However, since the circling motion
in the xy–plane discussed in § 4.3.3 is much more pronounced than the motion in
the z–plane, we may expect that the vorticity of the flow causes the shedding to
occur mainly in one plane, instead of varying in orientation.

In figure 4.10 the shedding process can be seen in more detail. We see the
first image reproduced in the fourteenth, indicating that the shedding process has a
frequency of about 4 Hz. The first vortex is shed from the low-fluid-velocity side
(image 10) and the one at the high-fluid-velocity side follows directly after (image
13). The shedding process is less clear for the higher cylinder frequencies. For
the cylinder frequency (fc) of 0.5 Hz it was estimated to be 3.85 Hz. The Strouhal
number is defined as

St =
2Rf

U0

, (4.21)

where f is the vortex shedding frequency. For a cylinder rotation frequency of 0.5
Hz St = 0.4, whereas for fc = 0.2 Hz, the same shedding frequency yields St =
0.15. This indicates a decrease of St with decreasing fc and increasing Re (since
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Figure 4.7: Flow field (indicated by arrows) and vorticity (indicated by colors,
green represents zero vorticity). The red line indicates the vertical position of the
cylinder center, the center is out of sight for this image. The high fluid velocity side
is on the left side of the sphere. The sphere diameter is 6 mm, the cylinder rotation
frequency is 0.2 Hz. Re ≈ 900, Srω ≈ 0.05. The vortex shedding frequency is
about 4 Hz.

Re increases with decreasing fc ((4.15), (4.18) and (4.19)). In a uniform flow
St increases with Re. However, in our rotating system, the vorticity parameter
decreases with increasing Re. The high dimensionless vorticity at lower Re is
probably the cause of a higher value of St for fc = 0.5.

The differences with Sakamoto and Haniu [22] with respect to the detachment
location of the vortices may be a result of the fact that our particle is not truly
fixed. Due to the sphere spin, there is a higher relative velocity on the low velocity
side, which may destroy the one-sided vortex shedding. An other difference with
the linear shear flow is the cross-stream shear component present in the solid body
rotation. As was shown in chapter 3 this component can change the behavior of the
sphere drastically.

Another interesting aspect of figures 4.7, 4.8 and 4.9 is the deflection of the
wake. The sphere may interact with its own wake when the wake is advected
downstream and reaches the top of the sphere after one revolution of the cylinder,
see figure 4.11a. In this case it is as if there is a sphere located upstream of the
sphere under consideration as shown at the right of figure 4.11a. Wake interaction
may arise provided that the wake has not diffused completely after one rotation and
it is not deflected substantially towards the cylinder center.

We address first the wake diffusion and estimate for which set of parameters

creo
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Figure 4.8: As figure 4.7 but now for a sphere diameter of 8 mm and at a cylinder
rotation frequency of 0.5 Hz. Re ≈ 600, Srω ≈ 0.33. The vortex shedding
frequency is about 3.8 Hz.

Figure 4.9: As figure 4.7 but at a cylinder rotation frequency of 1.0 Hz. Re ≈ 360,
Srω ≈ 0.67. The vortex shedding frequency could not be determined. The red
cross indicates the cylinder center.

the wake length is such that it can interact with the sphere in the next revolution.
The velocity defect vs in the wake is [10]

vs =
FD

4πρνs
, (4.22)

creo
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Figure 4.10: Sequence of PIV images for fc = 0.2 Hz, 6 mm diameter LDPE sphere.
The arrows indicate the flow field, the color of the arrows is a measure of the mag-
nitude of the velocity. From the second to the last image one cycle is completed,
consecutive frames are 0.02 s apart. The vortex shedding frequency is about 4 Hz.

creo
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where s is the coordinate in the direction of the wake and FD the drag force. After
a full rotation s = 2πre and for no wake interaction the velocity defect should be
much less than the velocity of the undisturbed incident flow ωre. This holds when

CD

16π

R2ω

ν
≪ 1. (4.23)

As a result we may expect wake interaction due to the rotation of the fluid when

ωR2

ν
∼ O(1). (4.24)

For the last 4 liquids in table 4.1 ωR2

ν ≥ 1 for most rotation rates and thus wake
interaction as indicated in figure 4.11a may be present.

Although the wake may survive a full cylinder revolution, it will reach the top
of the sphere only in some cases. This is due to the pressure gradient caused by
the cylinder rotation which deflects the wake towards the cylinder center. From the
momentum equation in radial direction (∂p

∂r = ρuθ

r , with p the pressure and r and θ
the radial and tangential directions) we see that to maintain the pressure gradient,
the trajectory of the retarded fluid in the wake adopts a smaller radius. As a result
the wake is deflected towards the cylinder center. In figure 4.11 on the left side
a sketch of this deflection for different sphere positions is shown. For a sphere
far away from the cylinder center as in figure 4.7 (and sketch in figure 4.11b), the
Reynolds number is high and the wake is long. It is not deflected very strongly.
In figure 4.8 (sketch in figure 4.11c) we see a stronger deflection. For even higher
rotation rates, figure 4.9 (and sketch in figure 4.11d) shows that the wake is very
strongly deflected toward the center of the cylinder.

At the right of figure 4.11 the effect of the wake on the sphere in the next
revolution is sketched. Case (a) is hypothetical: the wake survives a full rotation
and is not deflected at all. As a result the sphere feels its own wake as if it were
the wake of a sphere upstream of it. In case (b) the wake also survives a full
revolution, but now is slightly deflected. As a result the sphere will not feel its own
wake. For a higher cylinder frequency as in (c) the wake is deflected more. The
wake is shorter because the particle Reynolds number is lower at higher rotation
frequencies. However, the path over which the wake may decay is also shorter. It
is as if the two spheres in the representation at the right of figure 4.11 were closer.
In this case interaction occurs. For the last situation the deflection is too strong
for interaction. What determines the limits between the different cases is unclear.
Above discussion serves merely to indicate possible wake-interaction scenarios,
relevant for the interpretation of some of the data in the next sections.
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(a)

(b)

(c)

(d)

Figure 4.11: Left: sketch of the wake behind the sphere. (a) The trajectory of the
wake for the hypothetical case where no deflection of the wake occurs. Particle
equilibrium position (b) far from the cylinder center, (c) at intermediate distance
and (d) close to the cylinder center. The crossing of the solid lines denotes the
cylinder center. Right: resulting wake interaction after one revolution of the cylin-
der.
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4.3.5 Results: Dependence of lift and drag on the control parameters

This section discusses the dependence of the equilibrium position (re, φe), the drag
and lift coefficients and the normalized particle spin rate on the system’s control
parameters defined in (4.10). In the figures in this and the next section, results
for the different liquids can be recognized by the symbols in the last column of
table 4.1.

Figure 4.12 shows the dependence of the equilibrium position of the particle
on the Taylor number Ta. For each liquid the viscosity is constant and an increase
in Ta indicates a higher rotation frequency of the cylinder. As the cylinder rotation
rate increases, the radial distance of the particle decreases and the particle finds
its equilibrium closer to the cylinder center (figure 4.12a). The equilibrium angle
φe is very close to π for Ta < 1 (i.e. for the more viscous fluid mixtures). For
liquids 6–9 we see an increase with Ta at first and as Ta increases further, the
angle decreases quite sudden for all liquids. However, the peaks for the different
liquids do not occur at the same value of Ta.
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Figure 4.12: Radial distance of the particle center (a) and angle of line between
cylinder center and particle center with respect to the horizontal (b) as a function
of Ta.

From (4.16) and (4.17) we see that re and φe are related to the lift and drag
coefficients. Therefore we inspect in figure 4.13 the effect of Ta on the lift and
drag coefficients, as well as on the particle spin rate. The drag coefficient decreases
for each liquid in figure 4.13a since the viscosity decreases. However each liquid
data set shows a spread over a large range of Ta and a relatively small range of CD.
The lift coefficient as function of Ta is shown in figure 4.13b and the normalized
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Figure 4.13: Drag coefficient (a), lift coefficient (b), normalized particle spin
rate (c), and lift coefficient corrected for spin (d) as function of Ta. Dashed and
dashed-dotted lines are to guide the eye for the data of liquids 8 and 9.

particle spin rate in figure 4.13c. The normalized particle spin rate shows peaks
for liquids 7–9. A relatively small normalized sphere spin rate is observed when
Ta (and consequently the cylinder rotation rate) is small for these liquids (note that
ΩP /ω is always above one in this setup unlike some of the data taken in the smaller
setup discussed in § 3.3). As a result the particle is located far away from the
cylinder center. As the cylinder rotation rate increases and the particle equilibrium
position is located closer to the center, the spin rate increases. It then decreases for
even higher cylinder rotation rates. This behavior may be a result of the scenarios
described in the previous section and sketched in figure 4.11. For sufficiently low
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Ta the ratio in (4.24) is small. The particle finds its equilibrium far from the
cylinder center. The wake can diffuse over a long trajectory before it reaches the
particle again after one rotation and will not interact with the particle. As Ta
increases, the particle equilibrium position is located more towards the cylinder
center. Now the sphere may interact with the wake as shown at the right side of
figure 4.11c. One side of the particle is in the wake, the other in the undisturbed
flow. As a result a large torque acts on the sphere. Since the particle reaches a
torque-free state, the spin rate will be very high under these circumstances. As Ta
increases further and the particle is located even closer to the cylinder center, the
wake deflection may be so strong that the particle cannot interact with its wake any
more (figure 4.11d). As mentioned before, for spheres very close to the cylinder
center the incident flow is unknown, since the incoming flow seen by the particle
is disturbed by its own presence.

A high spin rate of the sphere affects the measured lift coefficient. We define
an excess spin as

ΩP /ω − 1, (4.25)

since for Stokes flow the normalized spin rate ΩP /ω is 1. In figure 4.13d the lift
coefficient is corrected for the particle spin, assuming that the extra part of the lift
coefficient due to the spin is given by (4.8). By subtracting the part of the lift coeffi-
cient due to excess spin we find the corrected lift coefficient CL−3/16(ΩP /ω−1).
The high peaks in figure 4.13b are now lowered by this correction. The effect on
the lift due to the spin has only been demonstrated for 5 ≤ Re ≤ 200. However,
we apply (4.8) to the complete experimental data range to see whether it is valid
over a wider range. In figure 4.13 we see that the corrected lift coefficients for the
liquids with low viscosity fall better onto a straight line than the non-corrected lift
coefficients.

Figure 4.14 shows the dependence of the equilibrium position of the particle
on the Galileo number Ga defined in (4.10). For each liquid the Galileo number is
a constant and the figure shows the spread of re and φe. The effect of Ga on the
lift and drag coefficient and the particle spin rate is shown in figure 4.15.

Figure 4.15a shows a decrease of the drag coefficient with Ga. Since the
Galileo number is comparable to a Reynolds number (in Ga the velocity is based
on the terminal rise velocity, in Re on the undisturbed velocity at the sphere cen-
ter) this is according to expectation. The lift coefficient in figure 4.15b shows an
increasing trend with Ga up to Ga ≈ 206. After that CL decreases. This indicates
that the highest lift coefficients in liquids 8 and 9 are smaller than in liquid 7. As
indicated by Jenny et al. [6] we expect the critical Galileo number for which the
particle trajectory becomes unstable to be between 175 and 180 for our density
ratios (ρp/ρ ≈ 0.9). The particles in liquids 1–6 should all have axisymmetric
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wakes. Liquid 7 (Ga ≈ 206) is in the periodic zigzagging regime. Liquids 8 and 9
are in three-dimensional chaotic regime. The transition to an unsteady wake coin-
cides with a decrease of the lift coefficient. Figure 4.15c indicates that the spread
of the rotation rates in the same liquid increases with Ga. Whereas the envelope
of the highest values of CL shows an indentation for liquid 8 in figure 4.15b, this
is removed when correcting the lift coefficient for the excess particle spin (fig-
ure 4.15d).

In figures 4.16 and 4.17 the results are plotted as function of the density ratio
ρp/ρ. They show trends similar to those in figures 4.14 and 4.15. As the viscosity
of the liquids in table 4.1 decreases, the density ratio increases towards one. For
a density ratio larger than one, the equilibrium position is no longer stable, so we
can expect that the equilibrium positions become less stable for the less viscous
liquids. The effect on the particle trajectories can be seen in figures 4.3–4.6, where
the excursions around the equilibrium position are larger as the viscosity decreases.
Figure 4.17 shows the trend of the lift and drag coefficient as a function of the den-
sity ratio. However, for each liquid both the density ratio and the Galileo number
vary. The behavior shown in the figure can thus be a result of a different Galileo
number instead of a different density ratio. In fact, the data for the smaller sphere
in liquid 9 (⊳) fall onto the same range of values of CD and CL as the data in liquid
8 (⋆). The two liquids have a different value for the density ratio, but the same
Galileo number. Thus the Galileo number is a more appropriate parameter to de-
scribe the results. Apparently, the viscosity is important to describe the drag and
lift trends. The representation of the equilibrium position, drag and lift coefficient
and spin rate in terms of Ga, Ta and ρp/ρ has not revealed simple relationships.
From (3.11) we expect

re

R
∼ Ga

Ta
. (4.26)

This ratio does not contain the fluid viscosity. In figure 4.18 the equilibrium po-
sition as a function of Ga/Ta is shown. The data for re/R collapse more onto
one curve than when plotted as individual functions of Ta or Ga. However, for in-
creasing values of Ga/Ta the spread becomes extensive. The viscosity influences
the results via the drag and lift coefficient. Comparing the results in this section,
the equilibrium angle φe is best described by the Taylor number as in figure 4.12.
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Figure 4.14: As figure 4.12 but as a function of Ga.
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Figure 4.15: Drag coefficient, lift coefficient and normalized particle spin rate as
function of Ga.
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Figure 4.16: As figure 4.12 but as a function of the density ratio ρp/ρ.
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Figure 4.17: Drag coefficient, lift coefficient and normalized particle spin rate as
function of the density ratio ρp/ρ.
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4.3.6 Results: Dependence of lift and drag on other parameters

In figures 4.15a and 4.17a we found some collapse of the drag coefficient onto a
curve for the Galileo number and the density ratio. The lift coefficient and the
sphere spin rate cannot be represented as functions of one of the parameters Ta,
Ga and ρp/ρ alone. In this section we will inspect different representations of
drag, lift and particle spin. We include in our analysis the measured re/R of the
system, which is a function of Ta, Ga and ρp/ρ. The equilibrium position appears
in the definition of the Reynolds number Re, the Froude number Fr (4.19) and
dimensionless vorticity Srω (4.20). The dimensionless vorticity is the normalized
velocity difference over the sphere and therefore resembles a dimensionless shear
rate. Since in the literature lift and drag coefficients are frequently represented as
functions of the Reynolds number and the dimensionless shear rate these are ob-
vious choices. The Froude number balances the centripetal acceleration with the
gravitational acceleration and has been indicated as a relevant parameter by Naciri
[19] for a bubble in a horizontally rotating system. We will therefore also study the
effect of Fr on the lift and drag coefficients and the particle spin.
The effect of Fr is shown in figure 4.19. The drag coefficients fall onto one line,
except for the data in liquids 8 and 9 (figure 4.19a). The lift coefficients in fig-
ure 4.19b are compared to the parametrization for bubbles by Naciri [19]. Clearly,
his parametrization in (2.9) is not valid for solid spheres. The particle spin cannot
be represented as function of Fr (figure 4.19c). However, we can correlate the
high spin rates to the peaks in the lift coefficient. Subtracting the contribution to
the Magnus-like lift (4.8) due to the excess spin yields the corrected lift coefficient,
figure 4.19d. The data are fitted as a linear function of Fr

CL − 3

16
(
ΩP

ω
− 1) = 2.52 Fr + 0.30. (4.27)

This fit describes the dependence of CL on Fr for most data reasonably well.
Again we find that the correction of the lift due to excess particle spin improves the
collapse of the data onto a single curve.

We now consider the dependence on the Reynolds number and the vorticity
parameter. For the first three liquids in table 4.1 the Reynolds number is more or
less constant. This is a direct result of substituting (4.14) in the definition of the
Reynolds number (4.19) and remembering that the viscosity and particle radius are
constant in each liquid. For fluids with a low viscosity the radial distance decreases
with the square of the cylinder rotation rate (4.15) and thus the Reynolds number is
modified by varying the rotation rate of the cylinder. As a result, both the Reynolds
number and the vorticity parameter depend on the cylinder rotation rate for the less
viscous fluids and cannot be varied independently. From linear shear flow results
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Figure 4.19: Drag coefficient, lift coefficient and normalized particle spin rate as
function of Fr. The solid line in figure 4.19b is the parametrization of the lift
coefficient for bubbles according to Naciri [19] as indicated in (2.9). The solid line
in figure 4.19d is a fit to the corrected lift coefficient data (4.27).

we know that the shear rate has an effect on the drag and lift coefficient. We
may expect similar behavior for our vorticity parameter. Moreover, the vorticity
parameter indicates the proximity of the sphere to the cylinder center. As indicated
in § 4.3.4 the distance between the sphere and the cylinder center affects the wake-
interaction behavior. In an attempt to register both the Reynolds number effects
and the effects due to the vorticity, we plot the results as a function of the Reynolds
number, indicating the vorticity parameter by a color in figure 4.20.

In figures 4.20 and 4.21 the experimental and numerical data are compared.
The numerical data points from figure 4.1 are represented by (blue) circles. Fig-
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ure 4.20 displays all experimental data, whereas in figure 4.21 only data points for
which Srω ≤ 0.1 are shown. This is to allow for an adequate comparison between
numerical and experimental results, since for the numerical results Srω = 0.1.

In figures 4.20a and 4.21a the experimentally determined drag coefficients are
compared with the standard drag curve and the numerical data. It is clear from
figure 4.20a that as the vorticity parameter increases, the drag coefficient gener-
ally increases. For the experimental data with Srω ≤ 0.1 there is an excellent
agreement of the experimental data with the standard drag curve, as shown in fig-
ure 4.21a.

Figures 4.20b and 4.21b show the lift coefficient. The solid line represents the
fit to the numerical data (4.9). Figure 4.21b shows that the experimental data with
Srω ≤ 0.1 and Re < 200 fall onto (4.9), apart from the data around Re = 5.
As indicated in table 4.2 the measurement uncertainty of CL is high at Re = 5.
Figure 4.20b indicates that an increase in Srω generally results in a decrease in CL.
Up to liquid 7 (H, ▽) CL increases, in liquids 8 and 9 the values of CL decrease.
Figure 4.20b shows a small increase in CL for liquid 9 (◭,⊳) with respect to liquid
8 (⋆). In this liquid we observe high sphere spin rates and thus can expect a
strong Magnus-like effect, increasing CL. When we correct the CL for excess spin
as described in § 4.3.6 we find the results indicated in figures 4.20d and 4.21d.
Now the decrease of the corrected lift coefficient for higher Reynolds numbers is
smooth. It is of course not clear whether it is valid to assume the same effect of
particle spin on the lift coefficient as in (4.8) in this Reynolds range, since we have
no numerical data to validate this. However, these corrected results indicate a trend
in the lift coefficient that is well worth exploring.

In figures 4.20b–4.20e and 4.21b–4.21d the dotted line at Re = 212 indicates
the transition in a uniform flow where the wake becomes non-axisymmetric. The
dashed-dotted line at Re = 274 indicates the transition where the wake becomes
unsteady. The dashed lines in figures 4.21b and 4.21d are fits through the average
values of Re and CL in liquids 7, 8 and 9. The number of data points used to
determine these fits is of course insufficient to allow more than an indication of
a trend. However, it is interesting to see where this trend crosses the numerical
fit (4.9) for Re ≤ 200. In figure 4.21b the cross-over is close to Re = 212 (the
Reynolds number at which in a uniform flow the wake loses its axisymmetry), in
figure 4.21d it is close to Re = 274 (the Reynolds number at which in a uniform
flow the wake becomes unsteady). Since Srω ≤ 0.1 in this figure, we can expect
a behavior similar to that in a uniform flow. Observing the Reynolds number at
which CL starts to decrease, it is probable that some change in the wake structure
of the sphere causes the decrease of CL (see also the discussion of CL as function
of Ga in § 4.3.5).

Figures 4.20f and 4.21c compare the experimentally observed sphere spin rate
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ratio (ΩP /ω) to the numerical data and show again good agreement for 5 ≤ Re ≤
127 and Srω ≤ 0.1. The solid lines in these figures represent the fit to the nu-
merical data (4.7). The experimental data follow the fit well up to liquid 6. The
data in liquid 7 show a sudden decrease compared to the numerical trend (fig-
ures 4.20c, 4.20e and 4.21c). Since these data are beyond the Reynolds number at
which the transition to the non-axisymmetric wake occurs, the decrease in ΩP /ω
may be a consequence of a change in the wake structure behind the sphere as well.

For liquids 7, 8 and 9 the experimental data show effects that are not seen in
the lower Reynolds range: for high Srω, ΩP /ω is low, followed by a peak in each
liquid as the Srω decreases, after which ΩP /ω decreases (figure 4.20e). In fig-
ure 4.22 the spin rate is plotted as a function of the vorticity parameter (indicating
the distance to the cylinder center). For liquid 7 the peak in the spin rate is around
Srω = 0.13, Re = 274. For liquids 8 and 9 the peak is around Srω = 0.18. For
the last two liquids wake interaction (as described in the scenarios in § 4.3.4 and
sketched in figure 4.11) is considered to be the cause of the high ΩP /ω data points.
The interaction depends on the wake length and the proximity to the cylinder center
and thus on Re and Srω. For liquid 7, the peak occurs for lower Srω. Here, instead
of wake interaction, wake instability may be the cause of the decrease in ΩP /ω.
The initial increase of ΩP /ω may be due to the increase in Reynolds number. The
spin rate then decreases when the wake behind the particle becomes unsteady. This
is supported by the value of Re at which the decrease in ΩP /ω occurs (Re = 274,
where in a uniform flow the wake becomes unsteady) as well as by the relatively
moderate decrease in ΩP /ω compared to that in liquids 8 and 9. The particle spin
rates in figure 4.21c show a large spread for liquids 8 and 9 even though Srω ≤ 0.1.
It appears that Srω is a much more relevant parameter to describe the sphere spin
than Re for the liquids in the range Re > 200.

To evaluate the effect of the vorticity parameter Srω on the data we normalize
each data point by the value we find at the same Re and for no Srω (in the case of
the drag coefficient) or small Srω (in the case of the lift coefficient). For the drag,
we do this by normalizing the drag coefficients by the value of the standard drag
curve at the corresponding Reynolds number. Figure 4.23a shows the result for
liquids 1–6 plotted versus Srω. It also shows an error estimate. Because it contains
not only the error in the drag coefficient, but also in the Reynolds number, the error
bars are rather large. The overall trend shows a linear increase of CD/CD,standard

with Srω. Figure 4.23b shows the normalized drag coefficient for the data in liquids
7–9. Again CD/CD,standard increases with Srω, however for liquids 8 and 9 there
is a sudden strong increase in the normalized drag coefficient around Srω = 0.15.
Comparing figure 4.23b with figure 4.22 shows that this rise occurs for the data
for which the particle spin is strongly enhanced. As discussed above this is due to
wake interaction which changes the incident flow; thus, we are considering here
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data with a disturbed incident velocity. However, the wake interacting with the
sphere is expected to result in a decreased drag (a shielding effect). Therefore the
increase of the drag coefficient cannot be the result of the disturbance of the flow
field but is a result of the increase of the sphere spin. Moreover, the rise in the
drag coefficient is strongest for liquid 9, where also the spin rates rise strongest.
The linear shear flow results of Bagchi and Balachandar [2] show that in their
case the drag is not significantly influenced by the sphere spin. However the spin
of the sphere normalized by the rotation of the flow is always below one in the
case of a linear shear flow. We find values of ΩP /ω around 2.5 for liquid 9 and
around 2 for liquid 8. Apparently, such high particle spin rates affect the drag
coefficient. After the steep increase in drag coefficient, CD appears to rise linearly
with Srω; however the data of different liquids no longer collapse onto the same
line. Figure 4.22 shows that for the higher values of Srω, liquid 9 displays higher
values of particle spin. This may be the cause of the higher CD values of liquid 9.

Figure 4.23c shows the lift coefficients normalized by the value of the lift coef-
ficient for low Srω obtained by fitting the numerical data (4.9) as a function of Srω

for Re < 130. No apparent effect of Srω is clear from this figure. For the data with
higher Reynolds numbers, we have no prediction of what the lift coefficient should
be for low Srω, however we can use the fit of the average of the experimental data
with low Srω and high Re (the dashed line in figure 4.21b) to normalize CL. Fig-
ure 4.23d shows this normalized lift coefficient as a function of Srω for Re > 200.
In this range we see a clear trend: the lift coefficient decreases with the shear rate
up to Srω = 0.4. After that the curve flattens. For liquid 9 we see a anomaly for
the data that have high particle spin rates. The trend of the lift decreasing with Srω

is even more apparent if we study the lift coefficient, corrected by the particle spin
(figure 4.23e). The corrected lift coefficients are now normalized by the fit through
the average of the corrected lift coefficients with low Srω and high Re (the dashed
line in figure 4.21d). The anomaly has now disappeared and the data collapse onto
the same line.
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Figure 4.20: (on the previous page) Drag coefficient, lift coefficient and normalized
particle spin rate as function of Re. The spheres represent the numerical results.
The solid line in (a) represents the standard drag curve. The solid line in (b) rep-
resents the fit to the numerical data of the lift coefficient (4.9). The solid lines in
(c), (e) and (f) represent the fit to the normalized spin rates from the numerical
data (4.7). The solid line in (d) represents the fit to the numerical data of the lift
coefficient (4.9) with 0.0045 Re subtracted. The vertical dotted line at Re = 212
marks the transition to a non-axisymmetric wake, the vertical dashed-dotted line at
Re = 274 the transition to a unsteady wake, both in case of a uniform flow. The
other lines function again as guides to the eye.
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Figure 4.21: Drag coefficient, lift coefficient and normalized particle spin rate
as function of Re, for Srω ≤ 0.1. Circles are numerical data, open triangles
are experimental data. The solid line in (a) represents the standard drag curve.
The solid line in (b) represents the fit to the numerical data of the lift coefficient
(4.9) for Re < 200. The dashed line is a fit to the average values per liquid:
CL = −0.45 10 log Re + 2.37 for Re > 212. The solid line in (c) represents the
fit to the normalized spin rates from the numerical data (4.7). The solid line in (d)
represents the fit to the numerical data of the lift coefficient (4.9) with 0.0045 Re
subtracted. The dashed line is again a fit to the average values per liquid: CL −
3/16 (ΩP /ω − 1) = −0.40 10 log Re + 2.18 for Re > 274. The vertical lines are
as in figure 4.20.



4.3. EXPERIMENTS 111

0 0.2 0.4 0.6

1

1.5

2

2.5

Srω

Ω
P
/ω

(a)

0.05 0.1 0.15 0.2

1

1.5

2

2.5

Srω

Ω
P
/ω

(b)

Figure 4.22: Normalized particle spin rate as function of the vorticity parameter.
Enlarged plot on the right-hand side.

Figure 4.23: (on the next page) Drag coefficient normalized by the standard drag
coefficient and lift coefficient normalized by (4.9) in (c), and by the fits from
figure 4.21b and 4.21d through the average values of data with Srω ≤ 0.1
in (d) and (e). For (a) and (c) Re < 130, for (b), (d) and (e) Re > 200.
Solid lines are fits to the data. In (a) CD/CD,standard = 0.34Srω + 1 , in (b)
CD/CD,standard = 0.77Srω + 1. In (d) CL/CL,fit = −0.77Srω + 1, in (e)
(CL − 3/16(ΩP /ω − 1))/CL,fit = −1.46Srω + 1.
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4.4 Conclusion

In this study we obtained experimentally and numerically drag and lift coefficients
for a sphere in a solid body rotating flow. The numerical data are in the regime 5 <
Re ≤ 200. The experimental data span a much wider range: 0.1 < Re ≤ 1060.

The Reynolds number, the vorticity parameter and, for the experimental data,
the Froude number are all relevant dimensionless numbers for modelling the forces
on a sphere in this type of flow.

For Srω ≤ 0.1 and 5 < Re < 1060 the experimental results for the drag
coefficient show an excellent agreement with the standard drag curve. For higher
shear rates the drag increases linearly with Srω.

Regarding the lift coefficient several conclusions can be drawn:
(1) For Srω = 0.1 and 5 < Re < 200 the results of the numerical simulations

for non-rotating and freely rotating spheres suggest that the lift coefficient can be
decoupled in a flow-induced part and a part due to the sphere spin (the Magnus-like
lift).

(2) Both numerical simulations and experiments indicate a logarithmic increase
of the flow-induced lift coefficient with the Reynolds number for a freely rotating
sphere in a solid body rotation flow in the range Srω ≤ 0.1 and 5 < Re < 200.
The vorticity parameter has no substantial effect on CL if Re < 130. Contrary to
the results for bubbles in chapter 2 no negative lift coefficients were observed for a
spinning sphere. The normalized particle spin rate rises linearly with Re and shows
good agreement with the numerical data up to Re ∼ 130 provided Srω ≤ 0.1.

(3) By introducing the Froude number it is possible to realize a collapse of the
lift coefficients unto a straight line.

For higher Re the dynamics becomes different. The excursion of the sphere
around its equilibrium position becomes larger. The experimentally determined
drag coefficients still follow the standard drag curve for data with Srω ≤ 0.1.
However, the lift coefficient now decreases as function of Re. It also decreases
with Srω and the decrease is linear after the lift coefficients have been corrected
for particle spin. The sphere spin rate for data with Srω ≤ 0.1 no longer increases
linearly with Re. These differences in behavior of the lift coefficient and the sphere
spin rate are attributed to changes in the structure of the wake behind the sphere.

The three experimental data sets in the higher Reynolds regime all display a
peak in the spin rate. We ascribe this to the particle interacting with its own wake.
PIV images have shown that the wake is bent towards the cylinder center. If the
particle is close to the center, one side may be in the wake and this will result in a
high particle spin. As the particle moves away from the cylinder center, there is no
longer interaction with the wake and the particle spin rate decreases. If the particle
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is very close to the center the incident flow is completely disturbed and the spin
rate is lowered.
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Chapter 5

Asymmetrical particles and
bubbles‡

The bubbles and particles studied up to this point in this thesis were spherical or
slightly oblate. In this chapter we consider bubbles and particles that are strongly
deformed. We report on an intriguing phenomenon taking place in a liquid rotating
around a fixed horizontal axis. Under suitable conditions, bubbles and particles
are observed to drift along the axis of rotation maintaining a constant distance
from it and a constant angle of elevation above the horizontal. Absence of fore-aft
symmetry of the bubble or particle shape is a prerequisite for this phenomenon.
For bubbles, this requires a volume sufficiently large for surface tension effects to
be small and large deformations possible. Particle image velocimetry and flow vi-
sualization suggest that the particle wake does not play a role. The dependence on
bubble radius, particle shape, liquid viscosity and speed of rotation is investigated.

————————————————————————————————

5.1 Introduction

In the course of an ongoing project to study the forces acting on bubbles in a rigid-
body rotating flow, we encountered an intriguing phenomenon which is reported in
this paper. In the experiment, a liquid-filled horizontal glass cylinder (length 500
mm, diameter 100 mm) is in steady rotation around its axis. Under certain condi-
tions, a large bubble (equivalent radius Rb > 5 mm) injected in the liquid starts

‡J.J. Bluemink, E.A. van Nierop, S. Luther, N. Deen, J. Magnaudet, A. Prosperetti and D. Lohse,
Asymmetry-induced particle drift in a rotating flow, Phys. Fluids. 17, 072106 (2005).
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118 CHAPTER 5. ASYMMETRICAL PARTICLES AND BUBBLES

moving back and forth along a line parallel to the axis of the cylinder, while main-
taining a constant distance from the axis and elevation to the horizontal, without
any external force acting in this direction. Further experiments indicate that certain
particles also exhibit a similar axial drift.

5.2 Experiments

The cylinder is filled with a glycerin-water mixture and maintained in steady rota-
tion with angular velocities ω between 0 and 40 rad s−1. In this flow, small bubbles
(bubble radius Rb ≈ 1 mm) reach a steady equilibrium position under the action of
buoyancy, drag, added mass, and lift [3, 5]. In a water-glycerin mixture with rela-
tively large viscosity (ν ≥ 10−5m2s−1) and at sufficiently large angular velocities,
on the other hand, large bubbles (equivalent bubble radius 5 mm ≤ Rb ≤ 10 mm)
are observed to drift parallel to the cylinder axis. Their shape has no obvious sym-
metry. The drift appears to be very regular and steady and to take place at a fixed
distance re from the axis of rotation and at a fixed angle of elevation ϕe above the
horizontal. When the bubble reaches an end cap of the cylinder, it bounces, its
shape is reflected, and it starts travelling in the opposite direction at the same speed
as before. At lower viscosities, these large bubbles tend to break and, when they
do not, their translational motion in general is less stable. If the bubble is too large
(Rb ≥ 15 mm) or the rotation rate is too high, the bubble also breaks.

5.3 Results

The drift velocity vz is found to be dependent on the angular velocity ω, the equiva-
lent bubble radius Rb, and the liquid viscosity. Figure 5.1 shows vz vs. the rotation
rate for different Rb and ν.

In order to gain some understanding of the nature of the flow near the bubble,
the liquid was seeded with tracer particles illuminated by a light sheet perpendic-
ular to the cylinder axis in a standard PIV arrangement. Figure 5.2, in which the
black silhouette is the bubble, shows a cross section of the flow field obtained in
this way. Here the rotational Reynolds number, defined as Rer = ωreRb/ν is
about 20. The x-axis is horizontal and the y-axis vertical in a plane perpendicular
to the cylinder axis the position of which, located at (x = 0, y = 0), is marked by
a cross. The color coding gives the magnitude of the velocity vectors. The image
suggests that the wake trailing the bubble in the circular motion has essentially dis-
sipated by the time the liquid has completed an entire revolution. Thus, the bubble
does not seem to interact appreciably with its own wake.
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Figure 5.1: The axial drift velocity versus the rotation rate of the cylinder for large
bubbles on a log-log scale. � Rb ≈ 6.2 mm, ◦ Rb ≈ 7.2 mm; ⊲, ♦ Rb not
specifically measured. � ν = 6.7×10−5 m2s−1; ◦, ⊲ and ♦ ν = 1.7×10−5 m2s−1.
Solid line: vz ∝ ω0.66.

By recording the tracer particles trajectories with a longer exposure we obtain
an indication of the pathlines of the flow. In Fig. 5.3 the pathlines in a cross-section
of the (x,y)-plane are shown for a bubble moving away from the camera. In frames
4, 5 and 6 the bubble travels through the light sheet. Here several vortices are
apparent, although it is not clear whether they remain attached to the bubble or are
shed similarly to a Kármán vortex street. The relatively low Reynolds number of
the rotational flow, Rer ∼ 20, suggests the first possibility as the more likely one.

Since the phenomenon only occurs with strongly deformed bubbles, we de-
cided to investigate whether it would also occur with asymmetrically shaped rigid
bodies made out of a plastic material with a density ρ = 900 kg m−3. As a control,
we used particles with fore-aft symmetry such as solid spheres, prolate spheroids,
and cylinders and spheroids cut by planes parallel to the major axis. All these
symmetric bodies aligned their major axes with that of the rotating cylinder and
came to an equilibrium position (fixed re, ϕe, and axial location) just like spherical
bubbles. When the fore-aft symmetry was broken, however, the same axial drift
observed with large bubbles set in. The presence or absence of axial symmetry
did not seem to play a role. Thus, we find that cones (Fig. 5.4 a, b, c) exhibit axial
drift, as well as “mutilated” cylinders (Fig. 5.4 d), and spheroids cut at an angle
to their symmetry axis (Fig. 5.4 e, f ). The linear dimensions of the particles we
studied were of the order of 10 mm and the angular velocities for which the drift
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Figure 5.2: (Color) Velocity field in a plane perpendicular to the cylinder axis;
the bubble (black silhouette) is moving towards the camera. ω = 22.6 rad/s, ν =
9.9×10−5 m2/s, Rb = 8 mm.
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Figure 5.3: Pathlines in (x, y)-plane around a bubble moving through a light sheet,
away from the camera. ω = 28.3 rad/s, ν = 1.8×10−4 m2/s, Rb = 10 mm.
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Figure 5.4: Particles that display axial drift in rigid-body rotation. Side view (left)
and top view (right). The legends in figures 5.5, 5.6, 5.7, 5.8 refer to the letters in
this figure.

occurred were substantially lower than for bubbles, between 2 rad s−1 and 20 rad
s−1. Unlike bubbles, for particles the axial drift was found in fluids with both
high and low viscosities (e.g. water); however, the phenomenon was robust when
ν ≥ 10−5m2s−1. In addition, in contrast to bubbles, which are observed to turn
around once they reach one of the bases of the cylinder, solid particles remain at
the bases.

We characterize the size of the particles in terms of the radius of the base shown
in the right column of Fig. 5.4; this characteristic length will be denoted by the
same symbol Rb used earlier for the equivalent bubble radius. Given the variables
ω, ν, Rb and the gravitational acceleration g, two non-dimensionless parameters
can be defined, a “Froude number” Fr = ω2Rb/g and a dimensionless angular
velocity Ω = ωRb

2/ν. This latter parameter represents the square of the ratio of
the particle radius to the viscous diffusion length. The response of the system can
be characterized in terms of the rotational Reynolds number Rer defined earlier,
the drift Reynolds number Red = vzRb/ν, and the angle of tilt α of the particle
with respect to the cylinder axis.

Figure 5.5 shows the tilt angle α vs. Ω for a glycerin-water mixture of 80%
glycerin by weight. The particles only tend to align with the cylinder axis at high
rotation rates, while at low rotation rates the tilt can be quite substantial. The
particles display the largest drift velocity when their angle of tilt is between 20 and
40 degrees.

In Fig. 5.6 the drift Reynolds number Red is plotted as a function of the di-
mensionless numbers Ω and Fr for particles of different size and shape, and for
different viscosities. The cut cylinder and small cone have the same base surface,
while the base surface of the large cone is twice as large. The aspect ratios for all
particles in the figure is 2:1. The cones follow their tips, the cut cylinder follows
the side where the material is cut away.

It was already mentioned that the particle drift depends on the liquid viscosity.
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a

w

Figure 5.5: Tilt of the particle with respect to the cylinder axis (α) versus Ω. The
tilt is determined with a protractor, which accounts for the rather large error.

Figure 5.6 shows the drift Reynolds number of the particles in glycerin-water mix-
tures of 60% and 80% by weight vs. Ω (Fig. 5.6 a) and vs. Fr (Fig. 5.6 b). The
straight lines in Fig. 5.6 a correspond to Red ∼ 1/Ω2, or vz ∼ ν3/(ω2R5

b), while
the straight lines in Fig. 5.6 b show the relation Red ∼ Fr−1, or vz ∼ νg/(ω2R2

b).
These figures seem to exhibit two different regimes, one for the lower values of Ω
or Fr, and one for larger values of these quantities.

In Fig. 5.7 the same data are plotted in the form of Red/Ω vs. Fr2/Ω. This
figure indicates that, for sufficiently large values of the parameter Fr2/Ω and the
larger viscosity, the results for Red/Ω exhibit an approximate collapse onto a line
Red/Ω ∼ Ω/Fr2, implying vz ∼ g2Rb/(νω2).

It seems that the direction of motion depends on the orientation of the particle:
The tip seemed to be inclined towards the axis of rotation, when the drift was in
the direction of the tip. For drift in the opposite direction, the tip seemed to be
oriented away from the axis. If the orientation is reversed by shaking the cylinder,
so immediately is the direction of travel. The reverse motion seemed to be favored
for larger particle and less viscous liquids. Figure 5.8 shows the drift Reynolds
number Red plotted as a function of Ω and Fr for the larger cones in a fluid with
a lower viscosity. These cones drift in the direction opposite to the orientation of
their tip. The two cones have the same surface area and different aspect ratios of
2:1 and 3:1.

An obvious concern in the interpretation of these data is the possibility of wall
effects when the particles stabilize too close to the cylinder wall. While a precise
measurement of the distance of the particles from the cylinder axis was not possi-
ble, an approximate estimate can be found by a force balance in the plane through
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Figure 5.6: Drift Reynolds number vs. (a) Red = ωRb
2/ν, and (b) Fr = ω2Rb/g

for cones moving in the direction of the tip. Open symbols: data for particles
estimated to be near the cylinder wall.

the particle perpendicular to the axis of rotation. For the purposes of a rough esti-
mate we assume that the same forces act on the particle as would act on a spherical
bubble, except for buoyancy. Expressions for the forces on bubbles can be found
in [4] and in [3]. The drag force is expressed in terms of a drag coefficient, for
which we take the large Re limit 48/Rer [4]. The inertial, or added mass, force
has the usual expression in terms of a coefficient CA for which we use the sphere
value 1/2. For the lift force we use the high-Reynolds number expression of [1]
with a lift coefficient CL also equal to 1/2. In this way, as shown in Ref. [3], one
finds

re ≃
Rb

2(ρl − ρb)g

ρlω
√

81ν2 + 1

4
Rb

4ω2

. (5.1)
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Here ρl and ν are the liquid density and kinematic viscosity, and ρb the bubble or
particle density. For small viscosity this relation reduces to ρlreω

2 ≃ (ρl − ρb)g,
which expresses a balance between the centrifugal and gravitational pressure gra-
dients. Similarly, when viscosity dominates, we find µl(ωre)Rb ≃ R3

b(ρl − ρb)g,
which balances Stokes-like drag in a liquid with viscosity µl with buoyancy. Thus,
while (5.1) may not rest on a particularly firm theoretical basis, it does embody the
correct limiting behaviors and may offer a reasonable interpolation between the
two for intermediate situations.

At large rotation rates, Eq. (5.1) shows that ωre ∝ ω−1. The proportionality of
the drift velocity vz to ω−2 pointed out before in connection with Fig. 5.7 would
then be understandable if the force causing the drift were to scale like the square
of the rotational velocity at the particle position as with a Bernoulli effect. For
low rotation rates, on the other hand, Eq. (5.1) shows that the particle is closer to
the cylinder wall and wall effects eventually may become dominant. The data for
which the particles are estimated (with Eq. (5.1)) to be less than a particle diameter
from the wall are indicated by open symbols in Figs. 5.6, 5.7, and 5.8. While
most of the data points falling away from the straight lines appear to correspond to
locations affected by proximity to the wall, others do not. Hence, whether the two
regimes apparent from the figures are indeed to be ascribed to wall effects must
remain an open question at present.

5.4 Conclusion

A qualitative explanation for the transverse motion can be found by considering
the pressure distribution over the particle or bubble surface. When a fluid flows
over an object, on the high velocity-sides of the object surface the pressure is low,
causing suction forces. If the flow did not separate, while the drag force would of
course vanish due to a cancellation of the pressure forces in the direction of the
flow, a non-zero lift force would be generated since opposite surface elements are
not parallel to the axis. It is likely that a similar stress distribution is responsible for
the phenomenon described before. Under the action of this lift force, the particle
would drift axially at a velocity such that the drag balances the lift. In this sense
the drift we have observed can be understood as analogous to the forward motion
of a falling inclined cone, with the falling velocity replaced by the liquid rotation.

Mathematically, an equivalent description may be given in terms of the added
mass tensor [2]. In the absence of fore-aft symmetry, the added mass tensor has
non-zero off-diagonal elements when expressed in the cylindrical coordinates of
the present situation. In particular, there will be a non-zero rz-element with the
result that a radial acceleration (in the present case the centrifugal acceleration)



126 REFERENCES

produces a force in the z-direction. At low rotation rates the particle has more
tilt with respect to the cylinder axis, the situation is more asymmetric, and the
off-diagonal components of the tensors increase, giving rise to higher transverse
velocities.
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Chapter 6

Hydrodynamic interactions
between identical spheres in a
solid body rotating flow‡

Potential flow predicts that two particles will attract each other, whereas in the
creeping flow limit they repel. In this chapter we will explore the intermediate
Reynolds range and show the effects of the particle center-to-center distance and of
the angle between the incoming flow and the line that connects the particle centers.
Lift and drag coefficients and particle spin rate as functions of the distance, angle,
Reynolds number and flow vorticity are studied. The effect of the rotation of the
flow becomes especially relevant if a particle pair is oriented parallel to the main
flow.

————————————————————————————————

6.1 Introduction

Experimental results of Duineveld [4] and Kok [11] indicate that bubbles that
started off in a line arrange horizontally with respect to the incoming flow. Ir-
rotational flow models predict that spherical bubbles form horizonal clusters [16,
17, 21]. On the other hand there is only one brief report of such clustering in exper-
iments of bubble laden flows [5]. Bubble shape and the vorticity in the wake of the
bubbles are indicated as possible causes for the discrepancy between experimental
results and the irrotational predictions.

‡To be published as J.J. Bluemink, A. Prosperetti and L. van Wijngaarden, Hydrodynamic inter-
actions between identical spheres in a solid body rotating flow.
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For particles in industrial applications, Reynolds numbers in the range of 20–
300 are of interest. Particles will behave differently from bubbles, however, as its
surface adsorbes surfactants, the bubble will display behavior comparable to that
of a solid sphere. Therefore, studying sphere interaction is relevant for bubble
behavior in non-clean water.

The two most investigated arrangements of two interacting particles are par-
ticles placed (1) side-by-side (the line connecting the centers of the particles is
perpendicular to the incoming flow) and (2) in line with respect to the incoming
flow.

At zero Reynolds number there is no transverse force on the particles. For
particles aligned side-by-side at small but finite Reynolds numbers the distance
between the particles determines their interaction forces (see Happel and Brenner
[7]). When the particles are far apart, the situation is governed by inertia effects
and the particles weakly attract. When they are close, viscous effects become sig-
nificant. The gap between the spheres blocks the flow and the fluid at the sides of
the particles furthest from the symmetry plane moves faster than that at the sides
close to the symmetry plane. As a result the pressure is lower at the sides furthest
from the symmetry plane and the particles repel.

In the intermediate Reynolds range Kim et al. [10] investigated the forces on
two spheres arranged side-by-side in a uniform flow at Re = 50, 100, 150 for dif-
ferent spacings Dcc (distance between sphere centers dcc normalized by the particle
radius R) between the spheres. They found that the spheres repel when they are
close (Dcc < 15.8 for Re = 50, Dcc < 8 for Re = 100 and Dcc < 6.8 for
Re < 150) and weakly attract when they are at intermediate distance. When far
enough apart (Dcc > 42) there is no longer interaction between the spheres. For
Dcc < 8 the drag increases with decreasing Dcc. A slight increase in drag com-
pared to a single sphere is seen for 8 < Dcc < 42. When the spheres are close
their tops rotate towards the symmetry plane, whereas for intermediate distances
their spin is in the opposite direction. The distance where the transition in torque
direction occurs is earlier then for the attraction/repulsion case: Dcc < 9.2 for
Re = 50, Dcc < 5.0 for Re = 100 and Dcc < 3.9 for Re < 150. Particle spin
was not studied.

Folkersma et al. [6] studied two spheres side-by-side at Re = 10, 50 and 5 ×
10−7. They also found the change from repulsion to weak attraction (for Re = 10
at Dcc = 46 and for Re = 50 at Dcc = 15.8).

Legendre et al. [12] studied hydrodynamic interactions between two bubbles
side-by-side for a wide range of Reynolds numbers (0.02 ≤ Re ≤ 500) and center-
to-center distances normalized by the bubble radius (2.25 ≤ Dcc ≤ 20). Their
work shows a smaller drag compared to the single bubble drag for small Re and a
larger drag from Re ∼ O(10) due to the presence of the other bubble. Furthermore,
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the bubbles repel for Re below around 20 and after that start to attract. The exact
values of the Re depend on the center-to-center distance.

Particles and bubbles rising in line with respect to the incoming flow have also
been studied extensively. Harper [8] investigated theoretically the situation of two
spherical gas bubbles rising steadily in a line in a pure liquid for large Re. He
assumed the flow to be irrotational and superposed a uniform stream on a set of
image doublets. An equilibrium distance between the bubbles was predicted.

Spherical bubbles in line where numerically studied by Yuan and Prosperetti
[23] for Re ≤ 200 and separation distances of Dcc > 2.6. An equilibrium sep-
aration distance was predicted, where the wake effect and the inertial repulsion
balance. The results show very strong viscous effects, even at Re = 200, indicat-
ing the high-Reynolds-number results for spherical bubbles impractical (since for
even higher Re sphericity is not likely).

Harper [9] improved on the theoretical analysis of Harper [8] by allowing for
viscosity in the wake between the bubbles and obtained a better agreement with the
numerical results of Yuan and Prosperetti [23].

Ruzicka [15] studied numerically the dynamical behavior of a chain of spher-
ical gas bubbles rising in a vertical line in the range 50 < Re < 200, bubble
spacing Dcc > 2.6 (low spacing or touching bubbles was excluded). He found a
progressive drag reduction down the chain for the anterior bubbles due to the ve-
locity disturbances caused by the previous bubbles. Three bubbles had no steady
solution for Re < 135, but yielded a fast leading pair with a slow singlet behind it.
He showed that when inertial effects increase, the drag difference becomes smaller,
so that a triplet can be stable and that it rises slightly faster than a pair.

Chen and Lu [3] investigated experimentally both particles side-by-side and in
line for Re < 200 and found for the latter case a reduced wake for the trailing
particle under influence of the leading sphere. Tal et al. [18] investigated numer-
ically the interaction of two spheres in line for two different separation distances
at Re=40. Zhu et al. [24] experimentally measured the effect of the wake of one
particle on the other for 20 ≤ Re ≤ 130. Tsuji et al. [20] studied both particles
in line and side-by-side experimentally for Re < 1000. They found that for parti-
cles in line the interaction effects disappear when the separation distance becomes
larger than 5 to 10 times the sphere diameter, but for particles side-by-side the ef-
fect already disappears for separation distances of 2 to 3 times the sphere diameter.
More experimental work studying the drag force for particles in line and side-by-
side was done by Liang et al. [13] and [3]. Tsuji et al. [19] numerically studied
particles side-by-side and in line for Re = 30, 100, 200, and 250 .

As indicated in the conclusions of Legendre et al. [12] it is important to explore
how the equilibrium distance depends on the angle between the incoming flow and
the line that connects the bubble or particle centers to be able to come to a more
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general moderate-to-high Reynolds number description for interaction forces.
Several authors studied the effect of the angle between the line connecting the

particle centers and the incoming flow together with the effect of the separation
distance. Prahl et al. [14] numerically studied the drag and lift coefficient of two
fixed spheres at particle Reynolds numbers Re of 50, 100 and 200 for separation
distances up to 6 times the sphere diameter. They found a large decrease of the
drag when the particles are placed in line and an increase for the side-by-side ar-
rangement. The largest effect on the lift was found for a particle slightly upstream
and at a small separation distance. Yoon and Yang [22] numerically studied the
mean drag and lift coefficient as functions of the angle and the separation distance
(up to 4 times the sphere diameter) for Re = 300.

This chapter focusses on a pair of identical spheres in different arrangements
with respect to the incoming flow. In two ways this work is different from previous
numerical simulations. Firstly, the particles are in a solid body rotating flow. How-
ever small the rotation may be, there will be some curvature in the flow and this
will affect the symmetry. Secondly, the spheres are allowed to reach a torque-free
spin rate. In most of the earlier studies the spheres were fixed and not allowed to
spin.

6.2 Geometry and numerical method

In this chapter we consider particles with a radius R in a solid body rotation flow
field defined by (3.15) with the prefactors α and β set equal to 1. The particle at
(x, y) = (0, 0) in figure 3.14 is referred to as the reference particle. The relevant
dimensionless numbers in the numerical simulations for the reference particle are
the particle Reynolds number Re as defined in (3.1) and the vorticity parameter
Srω as defined in (3.10).

Particle interactions in a solid body rotation flow field can be studied in several
ways. In this chapter we restrict ourselves numerically to two situations. In the
first situation we study an infinite line of particles parallel to the axis of rotation.
Further details are given in § 6.2.1. In § 6.2.2 we consider a second interaction
situation, i.e. two particles interacting in a plane perpendicular to the vorticity. The
numerical method is the same as in § 3.4. The domain size is chosen in the same
way as in § 3.4, i.e. the boundary is always at least 10 particle radii away from the
particle centers, expect in the axial direction (where period boundary conditions
are applied), where it is at least 8 particle radii away. The resolution and the order
of the analytical expansion (discussed in § 3.4) may behave somewhat differently
in the case of two interacting particles compared to a single particle. For further
detail see § 6.3.1.
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Figure 6.1: (a) Line of particles simulated as a result of periodic boundary condi-
tions on the xy-planes. (b) Simulation domain where the domain size in z-direction
determines the center-to-center distance dcc for the line of particles.

Experimentally the particle interactions are studied by inserting several spheres
in the cylinder the characteristics of which were described in chapter 4. The pro-
cedure described in § 4.3.2 was followed and a long settling time was allowed.
Inserting only a few spheres will make the chance on interaction very small in the
experimental situation since the cylinder covers a length of 500 mm. Therefore
about 30 particles were inserted to increase the probability of an interaction.

6.2.1 Particles along a line parallel to the axis of rotation

As described in § 3.4 periodic boundary conditions were used on the bounding
planes normal to the rotation axis of the solid body rotation. As a result, if the
simulation domain contains one sphere, we simulate an infinite line of spheres a
center-to-center distance dcc apart, equivalent to the situation in figure 6.1a. When
the domain size in the axial direction is sufficiently large as in chapters 3 and 4, the
presence of the other spheres is not noticeable. If however the domain in the axial
direction is small as in figure 6.1b, the particles are close and affect the forces on
each other. Changing the domain in the axial direction is equivalent to changing
dcc. In fact dcc equals the box size in axial direction. The center-to-center distance
dcc is normalized by the particle radius R and the ratio is referred to as Dcc. The
effects of changing Dcc on the drag coefficient as defined in (4.1), the lift coefficient
as defined in (4.2) and the torque-free spin rate are considered.
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Figure 6.2: (a) Geometry for the reference particle. (b) Geometry for two particles
interacting in a plane perpendicular to the vorticity, defining dcc and θ.

6.2.2 Two particles interacting in solid body rotation

Figure 6.2a displays the position of the reference particle in the solid body rotation
flow field. To study interactions between two particles in this flow field, a second
particle is placed at a distance dcc from the center of the first particle in the same
axial plane as the reference particle. Note that dcc is no longer the center-to-center
distance in axial direction, but now refers to the distance in one axial plane. The
periodic boundary conditions on the bounding planes normal to the rotation axis
are maintained, however the domain in axial direction is so large (at least 16 sphere
radii) that the presence of the other particles on the line parallel to the axis has no
effect.

The center-to-center distance between the particles dcc is again normalized by
the particle radius R and the ratio is referred to as Dcc. The line connecting the two
particles defines the angle θ with the direction of the incoming flow, the negative
y-axis, see figure 6.2b. In the numerical simulations both the reference particle and
the second particle are fixed. The forces on the reference particle and the torque-
free spin rates (see chapter 3) of both particles are considered as functions of Dcc,
θ, Re, and Srω.

When Srω is small, the reference particle is far from the axis of rotation. The
flow will be very similar to a uniform flow in that case. For a single particle on the
horizontal axis, the force in the y-direction can be seen as a drag force. The force
in the x-direction is a combination of lift, added mass and pressure gradient forces,
see (4.2). When a second particle is placed near the first particle, these forces will
be changed by the hydrodynamic interactions. The forces are expressed in terms
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Figure 6.3: Drag and lift coefficients and ΩP /ω at Re = 50 and Srω = 0.2 for dif-
ferent resolutions and order of the analytical expansion. Circles: order 1, squares:
order 2 and triangles: order 3.

of the coefficients CD and Cx

CD = Fy/(
1

2
πR2ρU2

0 ), (6.1)

Cx = Fx/(
1

2
πR2ρU2

0 ), (6.2)

where Fx and Fy are the forces in the horizontal (x-) and the vertical (y-) direc-
tion, ρ is the liquid density and U0 is the undisturbed velocity at the center of the
reference sphere.

Both particle centers are fixed, but the particles are free to rotate. Although in
realistic flow situations particles are seldom fixed to their positions, the evaluation
of the forces can give an idea of equilibrium distances and particle behavior in
particle-laden flows.

6.3 Results

6.3.1 Numerical accuracy and validation

All simulation results are for steady-state cases, the drag and lift forces having
reached a constant value and the particles having settled into their torque-free spin
rates. We will first consider the accuracy of simulations with a single sphere and
then address the accuracy of the simulations with two interacting particles.

Influence of resolution and order for a single sphere

Figure 6.3 shows the effect of the grid resolution and the order of the analytical
expansion on a single particle in a flow in solid body rotation at Re = 50, Srω

= 0.2. Comparing the drag coefficient (defined in (6.1)), lift coefficient (defined
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in (4.2)) and torque-free spin rate, indicates that order 2 (squares) and 3 (triangles)
yield almost identical results. The results with order 1 (open circles) clearly deviate
and consequently order 1 is not sufficiently accurate. Three different resolutions
have been checked: 4, 8 and 16 grid cells per radius. The difference between 8 and
16 cells per radius is small, while for 4 cells per radius there is a clear deviation.
We can conclude that for a single particle 8 cells per radius and order 2 for the
analytical expansion suffices to get acceptable accuracy.

Influence of resolution and order for two interacting spheres

For two interacting particles the order of the analytical expansion and the grid res-
olution needed to obtain accurate results may be different from the single particle
case. Here we examine the influence of the computational parameters for several
interaction situations. In table 6.1 the results for two particles with Dcc = 4 and
θ = 270◦ are displayed. Changing the order results in a 4% change of the force in
the x–direction, a 1.5% change in the y–direction. Changing the resolution results
in a change of about 6% in the x–direction, and again 1.5% in the y–direction.
The particle spin proves very sensitive to both the order and the resolution for this
case. Changing the order or resolution has a dramatic effect on the torque-free spin
rate. The effect of the dramatic change in spin on the lift coefficient is only mi-
nor. As we will see in section § 6.3.3 the situation under consideration here (Dcc

= 4, θ = 270◦) is a worst-case scenario, since the force in the x–direction and
the torque-free spin rate are changing dramatically when the particle is displaced
slightly from its position. Therefore, the force in x–direction and the torque-free
spin rate will not be so sensitive to the analytical expansion order and grid resolu-
tion in other simulation scenarios. When we consider for example particle interac-
tion at the same angle, but at Dcc = 3, table 6.2 shows that changing the order of
the analytical expansion has a far less dramatic effect on the forces and torque-free
spin rate, only in the order of a few percent. The drag coefficient is compared with
the value of Folkersma et al. [6] and the results agree. To obtain insight into the
accuracy for different simulation conditions, in table 6.3 the results for order 2 and
3 are compared for the case when there is a particle above the reference particle
at Re = 50. Cx shows a 2% change, ΩP /ω changes by 12%. For the results in
table 6.4 the reference particle is above the interacting particle at Re = 20; now
the change in Cx is about 5%, in ΩP /ω about 2%. For the simulations a grid res-
olution of 8 nodes per particle radius was adopted, and in most cases the order of
the analytical expansion was set to 3. We expect to obtain results that would vary
at maximum 2% in CD by changing resolution or order. For Cx we expect an ac-
curacy of about 5% and for ΩP /ω about 10%, cases for which a small change in
position causes a large change in Cx and ΩP /ω excluded.
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# nodes/R order CD Cx ΩP /ω

8 2 1.82 -4.52 10−2 4.15 101

8 3 1.79 -4.35 10−2 5.40 101

16 3 1.82 -4.11 10−2 3.38 101

Table 6.1: Comparison between results with different resolution and order of the
analytical expansion for two particles side by side, Dcc = 4, θ = 270◦, Re = 50,
Srω = 1 × 10−4. Note that at these values of θ and Dcc, Cx and ΩP /ω are very
sensitive to small changes Dcc in as shown in figures 6.11 and 6.12.

# nodes/R order CD Cx ΩP /ω

8 2 1.69 -1.26 10−1 2.62 102

8 3 1.69 -1.24 10−1 2.54 102

[6] 1.69

Table 6.2: Comparison between results with different resolution and order of the
analytical expansion for two particles side by side, Dcc = 3, θ = 270◦, Re = 50,
Srω = 1 × 10−4.

# nodes/R order CD Cx ΩP /ω

8 2 6.89 10−1 1.77 10−4 9.40 10−1

8 3 6.89 10−1 1.74 10−4 8.40 10−1

Table 6.3: Comparison between results with different resolution and order of the
analytical expansion for two particles side by side, Dcc = 3, θ = 180◦, Re = 50,
Srω = 1 × 10−4.

# nodes/R order CD Cx ΩP /ω

8 2 2.47 1.45 10−4 1.10
8 3 2.49 1.38 10−4 1.12

Table 6.4: Comparison between results with different order of the analytical ex-
pansion for two particles side by side, Dcc = 3, θ = 0◦, Re = 20, Srω = 1× 10−4.
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6.3.2 Particles along a line parallel to the axis of rotation

Figure 6.4 shows CD, CL and ΩP /ω as a function of the domain size in axial
direction normalized by the particle radius R, which equals the normalized center-
to-center distance Dcc in axial direction between the particles. Results for Re =
20 are indicated by circles, for Re = 50 by squares; for all cases Srω = 0.1.
For very small inter particle separation, equal or smaller than one particle radius,
the results are indicated by gray symbols. Since there are only 8 grid points per
particle radius, the number of grid points in the axial direction is for these cases
very small and thus these results may be unreliable. When the distance between
the particles is more than 10 particle radii, i.e. if the box is over 5 particle radii
in each direction, the results remain constant and the particles no longer affect
each other. The results for the drag coefficient are somewhat above those for the
standard drag curve. Part of this is caused by the vorticity of the flow. As shown
in chapter 3, table 3.1, an increase in Srω increases the drag coefficient. Another
cause for the increased drag force may lie in the finiteness of the box size. On the
other had it is not unusual to find results somewhat above those of the standard
drag curve in numerical simulations, see e.g. [1]. In general, when the particles
are closely arranged on the line, they experience a higher drag. The torque-free
spin rate decreases as dcc decreases. Surprisingly, the lift coefficient shows an
increase for decreasing dcc. As indicated in chapter 3 and Bluemink et al. [2]
an increase in ΩP /ω causes an increase in CL due to a Magnus-like effect. The
increase in lift occurring when the spheres on the line parallel on the axis have a
smaller separation distance, is a consequence of the displacement of the streamlines
by the neighboring spheres.

6.3.3 Two particles interacting

Dependence on angle

For two interacting particles the orientation of the line joining their centers with to
the incoming flow is very important. In figure 6.5 the effect of this orientation on
the drag coefficient CD is shown, while the center-to-center distance is kept con-
stant at Dcc = 4 or 8. The results are for Re = 50 and with a small dimensionless
vorticity Srω = 1 × 10−4, such that the flow is almost uniform flow. The dashed-
dotted line indicates the drag coefficient for a single particle. When the reference
particle is below the second particle, θ = 180◦, we see a clear shielding effect: a
strong decrease of the drag force. But also when the reference particle is above the
second particle (θ = 0◦) the drag is decreased. An increase in drag is seen when
the particles are arranged side-by-side with respect to the incoming flow. When the
particles are at Dcc = 8, the increase is hardly noticeable. However, the decrease
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Figure 6.4: (on the previous page) Drag (a) and lift (b) coefficients and normalized
particle spin rate (c) as functions of the distance between the spheres, normalized
by the particle radius, for Re = 20 (squares) and Re = 50 (circles), Srω = 0.1.
Closed symbols are for rotating spheres, open symbols for non-rotating spheres.
Grey symbols indicate simulations where the box size is equal to or smaller than the
distance between the spheres and the simulations may not have sufficient resolution
to simulate such a situation. The dotted line in (a) represents the value of the
standard drag curve at Re = 20, the dashed dotted line at Re = 50.
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Figure 6.5: Effect of varying the angle θ on CD. Re = 50, Srω = 1 × 10−4. (a)
Dcc = 4. (b) Dcc = 8. Dashed–dotted line is the result for a single particle. Dotted
lines function as guide to the eye.

in drag due to the shielding effect is still strong. For the force in the lateral direc-
tion (expressed in Cx) we see that the particles are repelled when they are in the
side-by-side arrangement (θ = 90◦ or 270◦) at the separation distances considered
in figure 6.6. For Dcc = 4, the reference particle is repelled from the other particle,
except around θ = 225◦. For Dcc = 8, the attraction and repulsion forces have
decreased by a factor of 5 approximately and the result is more symmetric. Both at
θ = 135◦ and 225◦ the lateral force is attractive. For these angles the fluid passes
mostly along one side of the upper sphere as sketched in figure 6.8a, creating a low
pressure at that side. For the upper sphere the force is always repulsive. However,
in between the two particles the flow may accelerate and cause an attractive force
for the lower sphere. Whether this acceleration occurs is however highly dependent
on the exact situation. For example the conditions θ = 135◦, Dcc = 3, Re = 20,
Srω = 1 × 10−4 give rise to a repulsive force. The flow field for this situation is
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Figure 6.6: Effect of varying the angle θ on Cx. Re = 50, Srω = 1 × 10−4. (a)
Dcc = 4. (b) Dcc = 8. Dashed–dotted line is the result for a single particle. Dotted
lines function as guide to the eye.

shown in figure 6.8b. The fact that we don’t see an attractive force when Dcc =
4, θ = 135◦, may be due to the curvature of the flow. Even though the rotation
is small (Srω = 1 × 10−4) the flow deflects somewhat. For y > 0 it deflects to
the left, for y < 0 to the right. In the case of θ = 135◦ it is as if the flow is tilted
slightly so that it encounters a more side-by-side arrangement of the particle and
the effect is a repulsive force.

For the particle spin rate figure 6.7 displays the following behavior: a nearly
zero spin rate when the particles are oriented in line with the incoming flow, the
top of the sphere rotating away from the other when they are arranged side-by-side.
For the diagonal arrangements the direction of the spin rate depends on whether
the reference particle is above or below. When it is above, the top of the sphere
rotates in the direction of the other sphere. The presence of the bottom particle
delays the flow separation from the surface of the top particle at one side, which
causes the top of the upper particle to rotate towards the bottom particle. When
the reference particle is below the other particle the top of it rotates away from that
particle. Again the small dimensionless vorticity of the flow breaks the symmetry
of figure 6.7a: the spin rates at θ = 225◦ and 315◦ are not as high as at 45◦ and
135◦.

In figure 6.9 the effect of increasing the dimensionless vorticity is studied for
Re = 50, Dcc = 4. The effect of increasing Srω on the drag force is very small,
although it is somewhat increased in the case of θ = 180◦. This is probably a result
of the wake deflection of the top sphere, which decreases the shielding effect. Also



140 CHAPTER 6. HYDRODYNAMIC INTERACTIONS

  0     90    180    270    360
−0.05

0

0.05

θ (deg)

Ω
P
 d

cc
/U

(a)

  0     90    180    270    360
−0.05

0

0.05

θ (deg)

Ω
P
 d

cc
/U

(b)

Figure 6.7: Effect of varying the angle θ on ΩP dcc/U . Re = 50, Srω = 1× 10−4.
(a) Dcc = 4. (b) Dcc = 8. Dotted lines function as guide to the eye.
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Figure 6.8: (a) Sketch of the flow past two spheres with θ = 225◦. (b) Flow field
for Re = 20, θ = 135◦, Dcc = 3, Srω = 1 × 10−4. The length of the arrows is
proportional to the velocity. The color code is in units of the undisturbed velocity
at the center of the sphere U0.
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Figure 6.9: Effect of varying the angle θ on CD (a), CL (b) and ΩP dcc/U (c). Re
= 50, Dcc = 4. Squares: Srω = 1 × 10−4, triangles: Srω = 0.1. The dashed–
dotted line is the result for a single particle at Srω = 1 × 10−4. The dashed line is
the result for a single particle with Srω = 0.1. Dotted lines function as guides to
the eye.

the force in lateral direction shows little change due to a change in Srω accept
when θ is close to 180◦. Here the sudden increase is also a consequence of the
wake deflection. Due to the curvature of the flow, the wake of the upper particle
is deflected somewhat towards the negative x–direction (since it is located on the
positive y–axis). As a result the left side of the reference sphere is in the wake of
the upper particle and the right side encounters a faster flow. This results in a force
in the positive x–direction. The torque-free spin rate behaves quitely different for
Srω = 0.1. The spin is mostly caused by the vorticity in the flow. However, the
interaction changes the spin rate. For example, when there is a particle above the
reference sphere, θ = 180◦, the spin rate decreases due to the wake of the upper
sphere.

Dependence on distance

Although we have seen some effects of the distance on the forces and torque-free
spin rate by comparing Dcc = 4 and Dcc = 8 results, we will now consider the
forces for a fixed angle θ as functions of the center-to-center distance.

First we consider the side-by-side arrangement for Re = 20 and 50. Fig-
ure 6.10 shows the results for the drag coefficient. For Srω = 1 × 10−4 and both
Reynolds numbers, the drag is high when the particles are close. As they are lo-
cated farther apart, the drag takes the single particle value. The point for Dcc = 3,
Re = 50, deviates from this trend. The order of the analytical expansion was 2
for this simulation. Presumably this order was too small to give an accurate result
for two particles at such small separation. In general the drag force approximates
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Figure 6.10: CD as function of Dcc, θ = 270◦. (a) Re = 20, (b) Re = 50.
Squares: Srω = 1 × 10−4, triangles: Srω = 0.1. The dashed–dotted line is the
result for a single particle at Srω = 1 × 10−4. The dashed line is the result for a
single particle with Srω = 0.1. Dotted lines function as guides to the eye.

the drag force on a single sphere when Dcc > 15. For Srω = 0.1 the drag force
approximates the drag for a single particle for smaller Dcc. In the x–direction for
both Re = 20 and 50 the force is repulsive, figure 6.11. The repulsive force decays
strongly for Dcc < 7. For Re = 50 a specifically steep decrease is seen between
Dcc = 3 and Dcc = 4. The repulsive force approaches 0 at Dcc ≈ 15. This is close
to the center-to-center distance where the repulsive force changes into a weakly
attractive force according to Kim et al. [10] and Folkersma et al. [6]. Since simu-
lations with a large separation require a large domain, these are very costly and no
simulations with Dcc > 15 were performed for this situation. When Srω = 0.1 the
force in x–direction approaches zero at a smaller separation distance. The rotation
rate for Srω = 1 × 10−4 approaches zero when Dcc > 7. For Srω = 0.1 the
rotation rate will not approach zero but increases with Dcc. This is because a sin-
gle sphere will spin fast in this flow and in the direction opposite to that caused by
the interaction. As the spheres are farther apart, the opposing spin due interaction
decreases and the total spin rate increases.

To consider the forces when the reference particle is above or below the in-
teracting particle, we normalize the force with the force on a single sphere in this
type of flow, in order to be able to display the results for both Srω = 0.1 and
Srω = 1 × 10−4 in the same plot. (The lateral force and the spin rate normal-
ized in the previous way are far smaller when Srω = 1 × 10−4 as compared to
Srω = 0.1.) Figure 6.13 shows the drag results for Re = 50. Figure 6.13a displays
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Figure 6.11: Cx as function of Dcc, θ = 270◦. (a) Re = 20, (b) Re = 50.
Squares: Srω = 1 × 10−4, triangles: Srω = 0.1. The dashed–dotted line is the
result for a single particle at Srω = 1 × 10−4. The dashed line is the result for a
single particle with Srω = 0.1. Dotted lines function as guides to the eye.
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Figure 6.12: ΩP dcc/U as function of Dcc, θ = 270◦. (a) Re = 20, (b) Re = 50.
Squares: Srω = 1 × 10−4, triangles: Srω = 0.1. Dotted lines function as guides
to the eye.
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Figure 6.13: Drag force normalized by the single particle drag force as function of
Dcc, Re = 50. (a) θ = 0◦, (b) θ = 180◦. Squares: Srω = 1 × 10−4, triangles:
Srω = 0.1. Dotted lines function as guides to the eye.

the normalized drag versus Dcc for the situation where the interacting particle is
below the reference particle (θ = 0◦). The drag on the reference particle is lowered
by the particle below, and it becomes close to the single particle value at Dcc = 8.
If however the reference particle is below (θ = 180◦), figure 6.13b indicates that
even when Dcc = 15 the drag force is still about 20% smaller than the single parti-
cle value. Results for Re = 20 (not displayed here) show similar behavior. When
Srω = 0.1, the results for θ = 0◦ remain the same, however the deviation from the
single sphere case for θ = 180◦ is smaller due to the higher dimensionless vortic-
ity. Probably this is caused by the wake deflection, which decreases the shielding
effect. The lift force in figure 6.14a shows a steep rise between Dcc = 3 and 4 for
both Srω = 1 × 10−4 and Srω = 0.1. After Dcc = 8 it approaches the single
sphere value. However, when the reference particle is below the second particle as
in figure 6.14b the particle will encounter a negative lateral force due to the inter-
action with the deflected wake of the upper sphere. It is unclear what separation
distance in the y–direction is needed in order to have no interaction effects between
the particles. To compare the spin rates in figure 6.12 the sphere spin rate was nor-
malized with the flow rotation rate ω. The plots show that for the upper particle the
effect of the lower particle is noticeable up to Dcc ∼ O(10). For the lower sphere
however, the effect is increasing with Dcc at least for Dcc < 15 and it is not at all
clear how far the spheres need to be separated to secure that the lower particle feels
no longer any influence of the upper particle.
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Figure 6.14: Lift force normalized by the single particle lift force as function of
Dcc, Re = 50. (a) θ = 0◦, (b) θ = 180◦. Squares: Srω = 1 × 10−4, triangles:
Srω = 0.1. Dotted lines function as guides to the eye.
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Figure 6.15: Spin rate normalized by the single particle spin rate as function of
Dcc, Re = 50. (a) θ = 0◦, (b) θ = 180◦. Squares: Srω = 1 × 10−4, triangles:
Srω = 0.1. Dotted lines function as guides to the eye.
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6.3.4 Experimental observations

When introducing several spheres in a viscous fluid (Re ≈ 5), no steady state situ-
ation was reached. The particles tended to cluster in several groups, but the number
of particles per cluster was varying in time, due to exchange of particles between
the clusters. Inside the cluster two main types of behavior were seen. Spheres
would align parallel to the cylinder axis and revolve around fixed points. Alterna-
tively, two or three spheres would circle around each other in a plane perpendicular
to the cylinder axis. No clear preference for one of the motions was observed.
The particles were never seen to collide. This in contrast to bubbles, which were
observed to collide (even several times) when in the same axial plane.

6.4 Conclusion

In this chapter several particle interaction situations in a solid body rotation were
studied. For the numerical method employed for this investigation, a resolution of
8 nodes per particle radius and an analytical expansion order of 3 appeared to yield
sufficiently accurate results for most cases.

In general, when particles are close and arranged side-by-side with respect
to the incoming flow the drag increases. When they are in a line parallel to the
axis of rotation, the lift force pointing in the plane perpendicular to the axis of
rotation increases as the spacing between them becomes smaller, but their spin rate
decreases. When the separation distance is more than 10 particle radii, a particle
no longer feels the presence of the other ones.

If two particles are in a plane perpendicular to the axis of rotation the forces
are very dependent on the angle of the particle pair with respect to the incoming
flow. The results are comparable to previous work for most cases. This indicates
that the effect of the flow field due to the solid body rotation is usually quite small.
An exception is the case of a sphere directly under another sphere; in this case the
wake deflection results in large lateral forces. For a particle separation distance of
more than 15 particle radii the forces approach those on a single particle. Again
when there is a particle above another this is no longer valid.

In general, to obtain a good approximation for the force on a sphere interacting
with another sphere one should well consider the angle between the particle pair
and the incoming flow if the separation distance between the particles is less than
15 particle radii. If the particles are arranged in line with the incoming flow, the
effects extend much farther. For a solid body rotation, when the dimensionless
vorticity is increased (from Srω = 1×10−4 to Srω = 0.1), the separation distance
at which the single particle value is approached decreases.
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Chapter 7

Conclusions and outlook

Throughout this thesis differences between particle and bubble behavior in a solid
body rotating flow, as compared to a linear shear flow or uniform flow, have been
discussed. In chapter 1 the importance of understanding bubble and particle behav-
ior for several applications, industrial and natural was indicated. Some differences
between particle and bubble behavior and some specifics of solid body rotation
were discussed.

The results for the lift coefficient for bubbles in a solid body rotating flow in
chapter 2 confirm the statement in the beginning of the thesis that the behavior of
objects in a solid body rotating flow is qualitatively different from that in a linear
shear flow. In the low Reynolds regime even negative lift coefficients were ob-
served for reasonably spherical bubbles.

Chapter 3 explored torque-free spin rates of spheres in several types of flows.
Experimentally and numerically it was shown that a sphere in a solid body rotating
flow spins faster around its axis than the surrounding flow. By numerical simula-
tion of different flow types it was shown that a shear component directed parallel
to the main flow dramatically changes the spin behavior. A study of the stress dis-
tribution over the surface of the sphere indicated that a change in the location of
flow separation is the basis for the change in spin rate for different flow types. The
particle spin in turn changes the lift force. Surprisingly, when two different flow
types are added, the spin rate obtained in the resulting flow is equal to the addition
of the spin rates in the flows of which it is composed at Reynolds numbers of 20
and 50.

Chapter 4 explored drag and lift for solid spheres. The parameterization for lift
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and drag is quite different for spheres than for bubbles and also the effect of the
vorticity contained in the solid body rotation differs. The lift coefficient rises log-
arithmically with the Reynolds number up to the critical Reynolds number where
a sphere rising in a quiescent flow would start to display zigzagging or helical mo-
tion. After that the lift decreases with increasing Reynolds number. The normal-
ized sphere spin rate increases linearly with the Reynolds number up to the critical
Reynolds number. Comparing the numerical results for freely spinning spheres
with non-spinning spheres indicates the effect of the spin on the lift force. Up to
a Reynolds number of 200 the results show that the lift on a sphere can be decou-
pled into a flow-induced part and a spin-induced part. The spin-induced part has a
same effect on the lift force in the solid body rotating flow as it has, according to
previous results, in a linear shear flow.

Chapter 5 described an unexpected phenomenon occurring when asymmetri-
cal particles or bubbles are injected in the solid body rotational flow: axial motion
caused by the asymmetry of the object. The phenomenon was explained in terms
of the stress distribution over the object.

In chapter 6 the interactions between two spheres have been explored. The
results show that the angle between the line connecting the spheres and the incom-
ing flow is very important for the forces that one sphere induces on another. The
effect of the solid body rotation is particularly relevant when one sphere is above
another. The wake displacement of the upper sphere then results in a lateral force
on the lower sphere and the shielding effect of the drag is decreased by this wake
displacement compared to a uniform flow.

In general regarding symmetrical objects in solid body rotation, the wake dis-
placement behind the object is the common cause for different behavior of particles
and bubbles as compared to a uniform flow or a linear shear flow.

In this thesis we studied the behavior of bubbles and particles. The particles
experimentally studied have a density close to that of the fluid. As a result the
equilibrium positions are not very stable. Future experiments with spheres with a
much smaller density may yield more stable equilibrium positions. It would be of
interest to compare the behavior of these light spheres with that of small spherical
bubbles. Furthermore a more detailed analysis of the stability of the equilibrium
position in different flow regimes is of interest for a better understanding of the
behavior of spheres.

In the low Reynolds number regime the history force may be studied by experi-
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ments or numerical simulations. By analyzing the trajectories of a sphere or bubble
one may be able to get a better insight in this force. In the simulations in this work
the spheres were fixed to one location and the steady state situation was consid-
ered. By considering an unsteady situation or allowing the sphere to translate, an
idea of the relevance of the history force at low but finite Reynolds numbers may
be obtained.

Another aspect that could be studied is the way a large bubble deforms in a
rotating flow and how this deformation changes the forces on it. Numerical results
obtained by Front Tracking simulations can provide detailed information about the
shape of the bubble.

Several other experiments can be devised. To further study the impact of a
cross-stream shear on particle or bubble behavior, one could allow a particle of
bubble to rise in a flow that is sheared in the direction perpendicular to the main
velocity component. The effects of the wake deflection on the forces, the sphere
spin or on an object below could be considered.

At Reynolds numbers of 20 and 50 we observed that the spin rate of a sphere
in a composed flow is the addition of the spin rates the sphere obtains in the sepa-
rate flows. It would be of interest to investigate up to what Reynolds number this
additivity is valid.

The decoupling of the lift force into a flow-induced part and a spin-induced
part has been shown to hold up to a Reynolds number of 200. It would be of great
interest to see if the decoupling remains valid at higher Reynolds numbers.

Visualization experiments with bubbles, reported by others, have shown that
tracer particles on a bubble’s interface rotate faster that the surrounding flow in a
solid body rotating flow. In future work one could see if the rotation of the bub-
ble’s surface causes the same effects on the lift force as we have demonstrated for
a spinning sphere.

Numerical simulations of interaction situations over a wider range of Reynolds
numbers would help towards the development of low-cost models for hydrody-
namic interactions.





Summary

The behavior of bubbles and particles in flows is of interest from a fundamental
point of view as well as relevant in many chemical, mechanical and environmental
applications. Some forces on bubbles and particles are well known. Several param-
eterizations for the drag force are available, which cover a wide range of Reynolds
numbers. These parameterizations are generally for a uniform flow. Less clear is
how the drag changes for flows deviating from the uniform case. Other forces such
as added mass and buoyancy are straightforward for every flow type. For the lift
force, however, there is little agreement between different results. To experimen-
tally study forces in a steady flow, a bubble or sphere (with a density smaller than
that of the fluid) can be inserted in a horizontally rotating cylinder. If the cylinder
is rotated with a constant rotation rate and sufficient spin-up time is allowed, the
object will, in many cases, find an equilibrium position where all forces balance.
By measuring the equilibrium position, two forces - the lift and the drag force - can
be determined.

For bubbles, the parameterization of the lift force in a solid body rotating flow
appears to be very different from that found in a linear shear flow. In the low
Reynolds number range (Re < 5) the lift points toward the low-fluid-velocity side
instead of the high-fluid-velocity side. The drag force behaves in a similar way
to a linear shear flow, i.e. the drag rises as the velocity gradient over the sphere,
normalized by the local flow velocity rises.

For particles, the lift behaves quite differently: direct numerical simulations of
a pinned sphere show that it rises logarithmically with the Reynolds number up to
Re = 200 when the sphere cannot spin. If the sphere is allowed to spin freely (as is
the case in the experiment), both experimental and numerical results show a linear
increase of the spin rate with the Reynolds number. Although the parameterization
of the lift force on a sphere as function of the Reynolds number is completely
different in solid body rotation from that in a linear shear flow, the effect of the
spin on the lift force is similar, i.e. the spin increases the lift on the sphere. The
rise in lift coefficient and spin rate break down when the Reynolds number exceeds
the critical Reynolds number at which the wake behind a sphere in a uniform flow
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loses its axisymmetry (Re = 212) or becomes unsteady (Re = 274).
In a solid body rotating flow several phenomena have been observed that are

not found in other common flow types. The spin rate that a particle adopts under
the torque-free condition is above the rotation rate of the solid body rotating flow.
This is in contrast the linear shear flow case, where the spin rate of the sphere is
smaller than that of the surrounding flow at finite Reynolds numbers. The results of
careful examination of the shear stress distribution on the particle surface suggest
that due to the flow component perpendicular to the main flow direction (the cross
component), the separation is delayed on the high-fluid-velocity side of the sphere
and advanced on the low-fluid-velocity side. As a result the sphere spins faster. The
effect of the cross component is also translated in a deflection of the wake behind
the sphere towards the rotation axis. As the Reynolds number increases, the shear
stress and the wake deflection decrease. The relative difference in shear stress as
well as the strength of the vorticity in the wake, however, increase. Consequently
a sphere spins faster as the Reynolds number increases up to Reynolds numbers
of 200. Numerical simulations of a straining flow or a shear flow with the shear
perpendicular to the main flow component show similar behavior. The simulations
of a sphere freely rotating in a linear shear flow, however, show a decrease of the
spin rate with the Reynolds number, which is in agreement with previous findings.
Surprisingly, when two different flow types are added, the spin rate obtained in the
resulting flow is equal to the addition of the spin rates in the flows of which it is
composed at Reynolds numbers of 20 and 50, values far beyond where one would
expect such linear behavior.

Another phenomenon pertaining to the solid body rotating flow is the drift of
asymmetrical particles: at certain conditions a (large) asymmetrical bubble or a
particle with a broken fore-aft symmetry drifts back and forth along a line parallel
to the cylinder axis, although the undisturbed flow has only components perpen-
dicular to the cylinder axis.

Numerical results of interactions between two spheres show that the rotation
component has a large effect when the particle pair is in line with the main flow
component. Dramatic changes in forces occur as well when the particle pair is
arranged diagonally with respect to the incoming flow.



Samenvatting

Het gedrag van bellen en deeltjes is zowel vanuit een fundamenteel oogpunt van
belang als ook met het oog op vele chemische, mechanische en milieukundige
toepassingen. Enkele krachten op bellen en deeltjes zijn bekend. Verscheidene
parametrisaties voor de weerstand zijn beschikbaar, welke een groot gebied van
Reynolds-getallen beslaan. Deze parametrisaties zijn over het algemeen geldig
in een uniforme stroming. Minder duidelijk is hoe de weerstand verandert voor
stromingen die afwijken van de uniforme stroming. Andere krachten, zoals de
toegevoegde massa en de opwaartse kracht zijn eenvoudig voor ieder stromingstype.
Voor de liftkracht is er echter weinig overeenstemming tussen verschillende resul-
taten. Voor het experimenteel bestuderen van krachten in een tijdsonafhankelijke
stroming kan een bel of deeltje (met een lagere dichtheid dan die van de vloeistof)
in een horizontaal roterende cylinder gebracht worden. Als de cylinder met een
constante snelheid roteert en voldoende opstarttijd in acht wordt genomen, zal het
object in veel gevallen een stabiel evenwichtspunt vinden waar alle krachten bal-
anceren. Door het meten van dat evenwichtspunt kunnen twee krachten - de lift en
de weerstand - worden bepaald.

Voor bellen blijkt dat de parametrisatie van de liftkracht in een roterende stro-
ming sterk verschilt van die in een lineaire schuifstroming. Voor lage Reynolds-
getallen (Re < 5) wijst de lift in de richting van de lage vloeistofsnelheid in plaats
van in de richting van de hoge vloeistofsnelheid. De weerstand gedraagt zich op
eenzelfde wijze als in een lineaire schuifstroming. De weerstand stijgt met de snel-
heidsgradient over het deeltje, genormalizeerd met de lokale snelheid.

Voor deeltjes gedraagt de liftkracht zich anders: directe numerieke simulaties
van een gefixeerd deeltje laten zien dat de lift logaritmisch stijgt met het Reynolds-
getal tot Re = 200 als het deeltje niet kan roteren. Als het deeltje vrij is om
te roteren rond zijn as (zoals het geval is in het experiment) dan laten zowel de
experimentele als de numerieke data een lineaire stijging van de rotatiesnelheid van
het deeltje met het Reynolds-getal zien. Hoewel de parametrisatie van de liftkracht
op een deeltje als functie van het Reynolds-getal totaal anders is in een roterende
stroming vergeleken met een lineaire schuifstroming, is het effect van de rotatie
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van het deeltje op de liftkracht voor beide stromingen gelijk (de rotatie zorgt voor
een stijging van de lift). De stijging van de liftkracht en de rotatiesnelheid van het
deeltje om zijn as stoppen als het Reynolds-getal die waarde heeft bereikt waarbij
het zog achter een bol in een uniforme stroming niet langer axi-symmetrisch is
(Re = 212) of tijdsafhankelijk wordt (Re = 274).

In een roterende stroming worden verscheidene fenomenen waargenomen die
niet gevonden worden in de meeste andere veelvoorkomende stromingen. De ro-
tatiesnelheid waarmee een deeltje om zijn as gaat draaien zodat het momentvrije
condities bereikt ligt boven die van de roterende stroming. Dit in tegenstelling tot
de rotatiesnelheid van een deeltje in een lineaire schuifstroming, die lager ligt dan
die van de omliggende stroming voor eindige Reynolds-getallen. De resultaten van
nauwkeurig onderzoek van de schuifspanningsverdeling op het oppervlak van het
deeltje suggereren dat door de stromingscomponent loodrecht op de hoofdstroom,
de loslating aan de zijde van hoge stroomsnelheid vertraagd is en dat zij versneld
is aan de zijde van lage stroomsnelheid. Als gevolg roteert het deeltje sneller om
zijn as. Het effect van de stromingscomponent loodrecht op de hoofdstroom ziet
met ook terug in een afbuiging van het zog achter het deeltje in de richting van de
rotatie-as van de cylinder. Als het Reynolds-getal stijgt, verminderen de afschuif-
spanning en de afbuiging van het zog. Het relatieve verschil in afschuifspanning
als ook de sterkte van de vorticiteit in het zog stijgen echter. Als gevolg daarvan
roteert het deeltje sneller naarmate het Reynolds-getal stijgt tot Reynolds-getallen
van 200. Numerieke simulaties van een schuifstroming met de verschuiving lood-
recht op de hoofdstroom of een rekstroming laten gelijksoortig gedrag zien. De
simulaties van een deeltje dat vrij roteert in een lineare schuifstroming laten echter
een vermindering van de rotatiesnelheid van het deeltje met het Reynolds-getal
zien, hetgeen in overeenstemming is met eerdere bevindingen. Een verrassend re-
sultaat is dat wanneer twee stromingstypes opgeteld worden, de rotatiesnelheid die
het deeltje bereikt gelijk is aan de som van de rotatiesnelheden in de afzonderlijke
stromingstypes bij Reynolds-getallen van 20 en 50, ver voorbij de waardes waar
men nog linear gedrag zou verwachten.

Asymmetrische deeltjes vertonen bijzonder gedrag in roterende stromingen.
Bij bepaalde condities blijkt een (grote) asymmetrische bel of een deeltje met een
asymmetrie (tussen voor-en achterkant) heen en weer te drijven langs een lijn paral-
lel aan de cylinder-as, hoewel de onverstoorde stroming alleen maar componenten
loodrecht op deze as heeft.

Numerieke resultaten van interacties tussen twee deeltjes laten zien dat de ro-
tatiecomponent een grote invloed heeft als het deeltjespaar parallel aan de hoofd-
stroom staant. Sterke veranderingen in de krachten treden ook op als het deeltjes-
paar diagonaal ten opzichte van de hoofdstroom georiënteerd is.
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